Как переделать старый корпус пк. Моддинг корпуса с целью улучшения вентиляции и уменьшения шума

Как переделать старый корпус пк. Моддинг корпуса с целью улучшения вентиляции и уменьшения шума

В сегодняшней статье мы постараемся рассказать о том, с помощью каких приемов можно улучшить вентиляцию и уменьшить уровень шума даже в самом простом и недорогом корпусе.

При раздумьях о подопытном экземпляре, наш выбор пал на CHENBRO Xpider II , так как его невысокая цена и очень стильный внешний вид привлекают немалое количество компьютерных энтузиастов. Однако, эффективность охлаждения комплектующих, установленных внутри него, не очень высока и немного «недотягивает» до соответствия с внешним видом.

Что же нам понадобится для его доработки?

Во-первых, это алюминиевые рейки или уголок. Приобрести их можно в любом строительном или хозяйственном магазине. В нашем же случае мы поступили еще экономней – были использованы салазки от поломанной выдвижной полочки под клавиатуру. В хозяйстве, как говорится, все пригодится.

Второе, это пластиковая или металлическая сеточка от акустических колонок. Технически она не сильно нужна, но если вам важен внешний вид вашего корпуса, то стоит отнестись к выбору этой детали серьезно – она будет у всех на виду.

Кроме первичных деталей нам пригодятся следующие инструменты:

  • 2 отвертки – шлицевая (плоская) и фигурная (крестовая);
  • электрическая или ручная дрель;
  • ножовка по металлу;
  • напильник и наждачная бумага;
  • кусачки и плоскогубцы;
  • немного резины от старой автомобильной камеры;
  • клей, двухсторонний скотч.

Приступим

Первый прием – самый простой и доступный каждому. Это уменьшение местных гидравлических сопротивлений корпуса или, говоря русским языком, улучшение «продуваемости корпуса». Сейчас постараемся объяснить, что стоит за столь умными фразами.

Вы, наверное, замечали в обзорах вентиляторов и кулеров такие технические характеристики как «воздушный поток» и «статическое давление». А обозначают они следующее:

    воздушный поток – количество воздуха, которое вентилятор может подать за единицу времени;

    статическое давление – сила, с которой вентилятор этот самый воздух толкает.

Из этих определений можно сделать вывод, что даже если вентилятор будет создавать огромнейший воздушный поток, но иметь малое статическое давление его эффективность окажется практически равной нулю, так как подаваемый воздух будет иметь слишком мало силы, чтобы преодолеть сопротивления в виде проводов или решеток. Вот мы и подошли к главной проблеме – это штампованные решетки на отверстиях для установки вентиляторов.

Да, именно штампованные решетки создают главное сопротивление на пути движения воздуха. Если взять линейку и измерять ширину стальной полоски, то вы обнаружите, что она составляет 0,15-0,30 по отношению к промежутку между ними. Следовательно, в сумме эти полоски перекрывают от 15 до 30 % площади отверстия, отведенного под вентиляцию. А ведь, обычно, используются полоски не только горизонтальные, но еще и вертикальные, что в сумме дает от 25 до 40 % перекрытия вентиляционного отверстия. Отсюда и вывод, что данная решетка уменьшает эффективность работы установленного за ней вентилятора. Кроме того, штампованная решетка, в отличие от решетки типа «гриль», имеет плоские острые края, что создает дополнительный шум при движении воздуха.

Как бороться с данной проблемой? Да очень просто – берем кусачки и «выкусываем» решетку. Далее, в целях безопасности, обрабатываем напильником срезы.

Получаем приблизительно такой результат. Теперь установленный вентилятор может «зачерпывать» воздух беспрепятственно по всему диаметру крыльчатки.

Аналогично поступаем и с задней решеткой. Обратите внимание на способ крепления вентилятора к корпусу – самый лучший метод это обычные винты с гайками. Но для уменьшения вибрации и, соответственно, снижения шума, рекомендуем использовать небольшие прямоугольные резиновые прокладки, вырезанные из старой камеры.

Следующим шагом к улучшению вентиляции будет установка дополнительного вентилятора.

Так как в данном корпусе на боковой крышке расположено очень красивое окошко, мы решили не портить его внешний вид установкой дополнительного вентилятора сбоку. Поэтому нам пришлось установить его спереди.

Металлические заглушки отсеков 5,25” (как и их пластиковые аналоги на лицевой панели) мы аккуратненько вынимаем и откладываем в сторонку – они еще пригодятся.

Итак, на передней панели у нас образовалось значительное пространство для маневров. Верхний отсек мы оставляем без изменений – там будет установлен DVD привод. А вот под него мы установим дополнительный 120 мм вентилятор.

Для его установки нам необходимо вырезать кусачками металлические ушки из одной из, казалось бы ненужных, заглушек для 5,25” отсека.

Обычными винтиками с гаечками прикручиваем ушки к вентилятору.

А через второе отверстие в ушке прикручиваем вентилятор во второй сверху отсек 5,25”. В резиновых прокладках нет необходимости, так как вентилятор фактически подвешен на пружинках и его вибрация не будет передаваться на корпус.

Стоит отметить, что данное расположение вентиляторов в корпусе наиболее эффективно, если на процессоре используется кулер башенного типа, такой как Noctua NH-U12P . В подобной ситуации кулер на процессоре будет подхватывать холодный воздух от переднего вентилятора и подавать нагретый на задний. Образуется некое подобие турбины или, как говорят люди, сквозняк.

Заметим, что в случае, когда на процессоре установлен кулер горизонтального типа, такой как Noctua NH-C12P , то наиболее целесообразным будет установка дополнительного вентилятора именно на боковую крышку корпуса (хотя в нашем случае это проблематично), чтобы он нагнетал холодный воздух так, как это сделано в AeroCool ExtremEngine 3T .

Одним из недостатков данного корпуса является его небольшая высота. На первый взгляд этого незаметно. Однако при установке массивного кулера, например когда мы установили Noctua NH-U12P, то стало заметно, что система охлаждения процессора своим габаритным радиатором вплотную приблизился к нижнему вентиляционному отверстию блока питания и наполовину перекрыл его. Естественно, что это повлекло за собой повышенный нагрев элементов блока питания и как следствие увеличение скорости вращения его вентилятора. Во-первых, это лишний шум, а во-вторых, сокращение срока службы элементов блока питания - нехорошо.

В целях уменьшения тепловыделения внутри корпуса и более эффективного охлаждения блока питания мы приняли решение вынести его за пределы корпуса.

Именно для этого нам и понадобятся алюминиевые рейки. Для нашего корпуса длина первой составила 500 мм, второй – 350 мм.

С одной стороны на рейках необходимо просверлить два небольших отверстия.

А с другой стороны – наклеить пару полосок двухстороннего скотча. Скотч предохранит ваш блок питания от царапин, а также будет погашать вибрации и дребезжания.

Далее для установки реек надо немного поработать ножовкой и напильником. Точных размеров, к сожалению, дать мы не можем, так как размеры реек и форма корпуса может быть разной, однако результат у вас должен получиться такой как на картинке. Ширина выпиленного отверстия должна быть такой, чтобы проложенные через него рейки плоской стороной максимально близко подходили к боковым стенкам корпуса.

На одном из 5,25” отсеков (у нас это получился второй сверху) просверливаем 2 небольших отверстия.

На соответствующей высоте сверлятся отверстия и на боковой части шасси корпуса.

С помощью небольших саморезов прикручиваем обе рейки, продев их через отверстие, выпиленное нами ранее. Короткая рейка прикручивается к боковой стенке, а более длинная – к 5,25” отсеку.

Все, на этом можно закончить доработку. Осталось только собрать всю систему. Но вот сделать это стало чуть сложнее.

Теперь собирать систему придется так. Сначала устанавливаются все «внутренности», а потом уже блок питания. Провода от блока питания необходимо собрать в пучок и протянуть через отверстие. Придерживая блок питания рукой, постепенно подавать его вперед и следить, чтобы провода не зацепились за кулер или какой-нибудь другой элемент. Значительно легче делать эту операцию вдвоем.

Когда все провода от блока питания будут уложены внутри корпуса, его можно аккуратно поместить в сооруженные салазки и вплотную придвинуть к задней стенке корпуса (для надежности можно и закрепить стандартными винтами, но, вероятнее всего, для этого придется делать новые отверстия). Рекомендуем перевернуть блок питания вентилятором вверх, чтобы он сразу же не втягивал теплый воздух, выдуваемый из корпуса.

Вот как обновленный корпус выглядит сбоку. Для облагораживания передней панели можно использовать упомянутую в начале статьи сеточку. Придать ей нужной формы и размеров можно благодаря напильнику, ножовке и плоскогубцам. Посадить ее можно на клей или скотч.

Выглядит корпус достаточно симпатично. Посмотрим, насколько лучше стало охлаждение внутри него.

Тестирование

При тестировании использовался Стенд для тестирования Корпусов.

Материнская плата

ASUS M2N SLI Deluxe на nForce 570 SLI (AM2, DDR2, ATX)

Процессор

AMD Athlon 64 3600+ X2 (ADO3600JAA4CU), AM2

Akasa AK859 CU для Socket 754/939/940/AM2

Оперативная память

2 х DDR2 800 1024 Мб Apacer PC6400

Видеокарта

Gigabyte GV-NX76G256D GeForce 7600GS 256Mb DDR2 PCI-E

Жесткий диск

Samsung HD080HJ 80 Гб 7200rpm 8 Мб SATA-300

Оптический привод

ASUS DRW-1814BLT SATA

Блок питания

Seasonic M12II-500 (SS-500GM Active PFC F3), 500 Вт

Мы решили не только протестировать охлаждения в корпусе до и после моддинга, но и сравнить результаты с показателями одного из самых эффективных в плане охлаждения корпусов - AeroCool ExtremEngine 3T . Правда и цена у такого корпуса намного выше, чем цена CHENBRO Xpider II.

Посмотрим на результаты.

Как видно, проделанные нами манипуляции позволили улучшить показатели абсолютно по всем критериям. При этом стоит отметить, что доработанный CHENBRO Xpider II приблизился к AeroCool ExtremEngine 3T на один большой уверенный шаг, хотя и не догнал его.

Выводы

Корпус CHENBRO Xpider II и в базовой версии является весьма неплохим продуктом, особенно учитывая его невысокую стоимость, а после небольшой доработки он еще и показывает отличные результаты по охлаждению компонентов. Отсюда следует сделать вывод, что практически любой, даже самый дешевый корпус можно заставить достаточно хорошо охлаждать систему. Ну а о внешнем виде и говорить то нечего – моддинг дает вам абсолютную и безграничную власть над изменением любой детали. Красьте, приклеивайте, вырезайте, и вы обязательно найдете именно тот, неповторимый, стиль, в котором вам хотелось бы видеть свой любимый компьютер. Касательно нашего опыта, то можно смело сказать, что, даже приложив минимум дизайнерской фантазии, у нас получился очень красивый и необычный системный блок.

Положительные последствия моддин га:

  • великолепное охлаждение блока питания;
  • оригинальный внешний вид;
  • уменьшение шума и вибраций;
  • условно бесплатная операция;
  • улучшение вентиляции внутри корпуса.

Негативные особенности:

  • увеличение внешних габаритов системного блока;
  • требует осторожности и навыков работы.

После приобретения нового компьютера либо усовершенствовании старого нередко возникает ситуация, что сам корпус компьютера уже не удовлетворяет тем или иным требованиям. Это и уровень шума, установка новых деталей либо дополнительного блока питания, охлаждения. А в ваш старый корпус не помещаются все эти новшества, либо уровень температуры повышается просто до запредельных пределов. И вы начинаете искать наиболее доступное решение проблемы: покупка нового корпуса или изготовления его самостоятельно, своими силами. В данной статье будет рассмотрен пример, как изготовить корпус для компьютера своими руками или его улучшить. При необходимости можно посмотреть видео инструкцию по изготовлению корпуса, например:

Как известно, в выборе корпуса компьютера нужно задумываться не только о внешнем виде, хотя оригинальный подход и нестандартное решение тоже немаловажны. В первую очередь нужно четко представлять, что корпус – это неотъемлемая часть вашего ПК, а не просто красивая коробка на столе или под столом. К конструкции корпуса нужно подойти со знанием дела. Сначала нужно узнать, какие бывают виды и типы корпусов, их различия и функциональность.

На сегодняшний день известны всего четыре основных разновидности типов корпусов для ПК. Есть, конечно, множество неординарных решений, но об этом после. В каждом из этих типов есть свои хорошие и не очень стороны, поэтому нельзя однозначно сказать, какой из них самый лучший. Просто прочтите их достоинства и недостатки, чтобы в своей конструкции было на что опираться. Или, если вы решите что самостоятельное изготовление вам не по силам, то вам будут ясны критерии, по которым вы сможете купить подходящий качественный корпус у производителя.

Существует вертикальные (tower) и горизонтальные (desktop) исполнения корпусов. Вертикальные корпуса обычно позволяют поставить большее количество накопителей и всевозможных других устройств, а горизонтальные – более компактны.

Первый тип корпуса, который мы рассмотрим, называется Small Form Factor(компактный)

Этот тип корпуса отличают компактные размеры. Он особенно удобен для офисных компьютеров, либо для домашнего ПК, если вам не нужна особо мощная система. Размеры такого корпуса весьма невелики (около 25х25 см), что позволяет ему легко вписаться в любой интерьер и занять минимум места. У таких корпусов есть большой минус, такая миниатюризация требует подходящей «начинки», небольшие размеры деталей. В такой корпус уже не получиться, например, вставить современную мощную видеокарту либо процессор. Кроме того, малые габариты могут вызывать проблемы с охлаждением, компоненты могут перегреваться, вызывая сбои и поломки системы.

Второй тип корпусов называется Mini-Tower Form

Такой корпус уже можно использовать для довольно мощного офисного ПК, или для домашнего медиа-центра. Такие корпуса, как правило, изначально укомплектованы блоками питания мощностью от 400W. В таком корпусе можно собрать хорошую систему с двухядерным процессором, поставить мощную видеокарту, но, многие современные комплектующие для такого варианта придется выбирать из расчета «мини». Еще одним неудобством является необходимость ежемесячной чистки от пыли.

Третий тип корпусов называется Moddle-Tower Form

Этот тип корпуса является самым популярным и распространенным. В такой корпус можно легко поместить хорошую систему вентилирования, несколько мощных видеокарт, поставить дополнительные жесткие диски. Этот корпус хорошо подойдет для тех, кто не ограничен размерами системного блока. Подобный тип корпусов сложно вписать в интерьер, но он обеспечивает хорошую производительность системы и удовлетворит требования даже заядлых «игроманов».

Четвертый тип корпусов называется Big-Tower

Такой корпус очень редко можно встретить в качестве домашнего ПК. Он заметно больше всех остальных, и его высота достигает, как минимум, полметра. В этом корпусе можно разместить не только штук пять хороших видеокарт или винчестеров, он пригоден для создания серверов либо компьютера, управляющего другими компьютерами в офисе. Такой корпус позволяет разместить в нем хорошую вентиляцию, что избавит компьютер от возможности перегрева. Таким образом, Big-Tower идеально подходит самым продвинутым пользователям, которые заняты в области IT технологий и особо требовательным геймерам.

Первым моментом, на который нужно обратить внимание при подборе либо конструировании корпуса – является ли достаточным внутреннее пространство. Необходимо определить, сможете ли вы поместить туда устройства для необходимого охлаждения системного блока, установки вентиляторов. Необходимо, чтобы воздух свободно циркулировал внутри корпуса, обеспечивая тем самым охлаждение всех деталей. Обращайте внимание на мощность находящегося в корпусе, либо купленного отдельно блока питания (БП). Она должна быть достаточной для планируемой системы ПК. Также следует обратить внимание на расположение блока питания в корпусе. При больших мощностях БП нужно подумать о его охлаждении. БП требуется охлаждать лишь себя.

Для оптимального охлаждения и низкого уровня шума БП можно разместить по таким схемам.

В схеме, с верхним расположением БП мы получаем такие достоинства:

  1. Достаточно низкий уровень шума (19дб) при установке БП мощностью 430 Вт, вентиляторе ARX FD1212-S2142E 12V 0,36A 2400 об/мин;
  2. Температура элементов повышается незначительно (+3 градуса в БП и +1 градус в корпусе);
  3. Стандартное расположение;
  4. Свободный выход воздуха.

Такую конструкцию можно собрать примерно так, как на фотографии ниже.

Компанией SilverStonetek налажен выпуск корпусов с нижним расположением БП.

Достоинствами данной конструкции являются:

  1. Блок питания служит для охлаждения только себя;
  2. Не возникает необходимости переделывать БП;
  3. Низкий центр тяжести для корпуса ПК.

Из недостатков можно отметить: избыточный шум вентилятора и затрудненный доступ воздуха к вентилятору БП.

Материалом для изготовления корпуса в основном является алюминий или сталь, хотя многие самодельные корпуса изготовлены из дерева или оргстекла. К достоинствам алюминиевого корпуса можно отнести легкий вес и хорошую теплоотдачу. Но такой корпус легко гнется и нередки появления царапин. Стоимость алюминиевых корпусов выше, чем стальных. Стальной же корпус обладает большей надежностью и прочностью. Все детали в таком корпусе будут надежно защищены. Кроме того, сталь лучше гасит вибрации, что снижает шум работы компьютера.

При рассмотрении разных дизайнерских решений корпусов, важно в первую очередь определится, какие разъемы и интерфейсы вам понадобятся сейчас и в будущем. Многие из возможных вариантов, например термометр, встроенный в колонки, вам не нужен, а другим он просто необходим. Здесь нужно вам самим решить, какой подобрать дизайн и конструкцию, исходя из перечисленного выше. И не забыть об оригинальности…

Корпус для компьютера своими руками

Итак, вы решили сделать самодельный корпус для компьютера. Этот корпус должен позволять установить в нем любые возможные комплектующие, давать к ним быстрый доступ и обеспечивать хорошее охлаждение. Уже сейчас возможны варианты корпуса, обеспечивающие: практически полную бесшумность, высоко производительность возможность наращивания вычислительного потенциала, удобство в обслуживании. Правда такой корпус не получится сделать компактным.

Корпус компьютера можно изготовить из дерева по приведенной ниже технологии.

На схеме видно расположение основных компонентов и циркуляция потоков воздуха.

Рабочие чертежи такого корпуса можно скачать. http://www.easycom.com.ua/downloads/skvorechnik_001.zip

Или посмотреть на рисунке ниже.

Корпус компьютера собирается из шести стенок и одной поперечной полки в средней части. В верхней части корпуса будет размещаться материнская плата, процессорный вентилятор, видеоадаптеры, а в нижней будут размещены все привода, дисковод, кардридер, жёсткие диски и блок питания. Нижнюю часть решено было снабдить только одним вентилятором размера 120х120х25 мм, так как там будет располагаться всего один элемент, который нуждается в принудительной вентиляции – это блок питания. В верхнюю часть для нормального охлаждения видеокарт и процессора необходимо поставить минимум три вентилятора, типоразмером 120х120х25 мм. Они идеально разместились на лицевой стенке будущего корпуса.

Выбор материала корпуса определяется вашими возможностями. Оргстекло или акрил по стоимости довольно дорого. Железные листы, из которых теоретически возможно изготовить такой же корпус, неприемлемы, так как сильно увеличат вес корпуса. Уже при толщине листа всего 2 мм. Изготовленный корпус, скорее всего, превысит 40 кг. А кроме того металл сложно обрабатывать и его стоимость тоже не малая.

В нашем варианте для изготовления корпуса будет использоваться ДСП. Это древесные опилки, спрессованные в листы размерами 2660х1660х16 мм (Ш.Д.В.) и пропитанные специальным клеем.

Детали корпуса размечаются по приведенным чертежам и выпиливаются. В этом нет ничего сложного, а можно заказать у тех, кто занимается изготовлением мебель. Если вы решили произвести вырезание заготовок самостоятельно, то вам понадобится необходимый инструмент: электролобзик и пилки по дереву.

У вас должны получиться такие заготовки. Хорошо обработайте края заготовок наждачной бумагой.

Когда все заготовки сделаны, можно приступить к сборке самого корпуса. Необходимо соединить и закрепить детали согласно чертежам. Самодельный корпус для компьютера в частично собранном виде корпус будет выглядеть примерно так.

По той причине, что передняя панель будет использоваться не только в качестве «воздухозаборника», а на ней будут располагаться кнопки включения, перезагрузки компьютера и все основные индикаторы (жёстких дисков и всей системы), их необходимо вделать в деревянную панель. Необходимо сделать отверстия под все порты, кнопки включения и перезагрузки, светодиоды индикации. Все необходимо делать аккуратно и строго по размерам.

Светодиоды не могут работать напрямую от колодки материнской платы, их необходимо подключить к ней последовательно с сопротивлением, номиналом 480- 500 Ом и рассеваемой мощностью 0,25 Вт. Все эти детали можно купить в любом радиомагазине. Провода, для соединения кнопок и светодиодов с материнской платой, впаиваются в Q-Connector, который идет в комплекте с платами ASUS. В качестве изолирующего материала используется термоусадка. Это такая трубка, изготовленная из специального материала (полихлорвинила), которая может изменять свою геометрическую формы (диаметр) при нагреве. На практике же, кусок такой трубки надевают на провод, спаивают его с другим и сдвигают кусок трубки к месту пайки. После чего его разогревают чуть-чуть зажигалкой. После этого трубка сужается вокруг место пайки и образует хорошую изоляцию. Коэффициент усадки достигает до 30%.

Это значит, что если диаметр трубки равен 6 мм, то при нагреве он изменит свое значение почти до 4 мм. Такую трубку можно купить также в любых радиотехнических магазинах, а цена всего 2-4 грн за метр. Таким изолирующим материалом желательно проводить все работы связанные с монтажом проводов для изготовления данного корпуса.

На задней стенке корпуса устанавливаются разъемы для входа и выхода питания от сети ~220 В и выключатель питания с подсветкой.

Следует обратить особое внимание на выбор вентиляторов для корпуса. Они должны соответствовать эстетическим требованиям, поскольку всегда будут находиться на виду. Ведь на переднюю панель больше всего обращают внимание. Необходимо подобрать самые тихие вентиляторы, подходящие к вашей производительности. Поэтому варианты типа решеточек «гриль» сразу отошли.

Хорошо подойдет для этого решения вентилятор Thermaltake Cyclo 12cm Red Pattern или ему подобный. Его выбор определился не только техническими характеристиками, которым могут позавидовать многие вентиляторы. Данный вентилятор работает при скорости 1500 об/мин и при этом уровень создаваемого шума не выше 17 дБ, что характеризуется, как крайне тихо. Еще его достоинством является своеобразная анимированная подсветка.

Однако можно выбрать и более «продвинутую» модель из данной серии вентиляторов, Thermaltake Cyclo 12cm Logo Fan. В этой модели, нет как в Thermaltake Cyclo 12cm Red Pattern различных анимированных эмблем, а «пишется» логотип Thermaltake, показывается приблизительная температура проходящего воздуха (встроенный термодатчик), а также отображается относительный уровень шума, который создает вентилятор.

Все эти вентиляторы при помощи саморезов по дереву монтируются на переднюю панель примерно таким образом:

Чтобы избежать проблемы изгибания текстолита материнской платы, происходящего из-за жёсткого крепления кулера без специальной прижимной пластины нужно чем-то заменить эту прижимную пластину. Можно подобрать войлок необходимой толщины (около 7-8 мм) и вырезать квадратик с размерами немного больше, чем отверстия для крепления кулера процессорного разъема Socket LGA 775. Если посмотреть на высоту стойки для крепления материнской платы то войлок выше ее на 1-2 мм, что и дает необходимую жёсткость при изгибе текстолита материнской паты. Войлок можно купить во многих строительных магазинах или «с рук» на рынках. Стоимость такого кусочка будет примерно 5 до 20 грн.

В самом конце всей черновой обработки корпуса необходимо проделать все нужные отверстия в полке материнской платы, через которые будут проходить провода питания, шлейфы жёстких дисков, дисководов и пр. Сначала необходимо прикрутить на время материнскую плату на свое место и отметить и подписать маркером все места расположения коннекторов. После чего при помощи электродрели и напильника все эти отверстия и делаются.

Самодельный корпус для компьютера с внешней стороны корпус проще всего оклеить самоклейкой. Такой материал изготовлен из плотной бумаги или специальной прорезиненной клеёнки. Цветовое решение ограничивается только вашей фантазией или ассортиментом магазина(от чистого белого цвета до различных фотообоев). Такую самоклейку продают рулонами на погонный метр. Ширина рулонов бывает двух типов: 450 мм и 550 мм. Стоимость зависит от сложности рисунка и ширины и обычно в пределах 11 – 22 грн за погонный метр. Для изготовления этого корпуса была выбрана блестящая «самоклейка» чёрного цвета. Проведя расчёт по чертежам, было определено, что для оклейки всего корпуса понадобится пять метров «самоклейки».

Для обработки вырезов будет использоваться другой материал, двусторонний скотч с поролоновой основой.

Он необходим как уплотнитель в местах соприкосновения вибрирующих компонентов (жёсткие диски, приводы) со стенками корпуса. Поролон, из которого сделаны полоски шириной 14-18 мм и толщиной 2 мм, по своей консистенции очень мягкий и сжимается до 0,5 мм, имея возможность еще и пружинить. Все это очень хорошо для уплотнителя. Наличие клейкой субстанции с обеих сторон позволяет крепко закреплять этот уплотнитель, а отдельные комплектующие крепить с его помощью.

Остается еще сделать «корзину» для крепления всех приводов, жёстких дисков, дисковода и кардридера. Применить стандартную «корзину», которая устанавливается в серийных корпусах, сложно и неудобно из-за нестандартности расположения установленных устройств. Можно использовать для этих целей кусочек оргстекла толщиной 4 мм. Его понадобится не так и много, где-то метр на метр. Раскрой такого материала проводится ручной шлифмашинкой или «болгаркой». Произвести все эти работы не сложно. После чего необходимо просверлить в заготовках нужные отверстия. Оргстекло довольно хрупкий материал, и при неосторожном обращении иногда крошится. Чтобы просверлить в нём отверстие диаметром 3,5 мм, нужно произвести эту операцию в три-четыре захода, начинать сверлом диаметром 1 мм, а заканчивать 3,6 мм. Нужно не забыть рассверлить «гнездо» для шляпки болта, чтобы спрятать ее. Для этого необходимо сверло такого диаметра, как шляпка. Все приводы, дисководы и кардридер крепятся с применением того же уплотнителя из двустороннего скотча.

Чтобы жесткие диски не передавали свою вибрацию корзине, увеличивая тем самым уровень шума, можно закрепить их при помощи четырех ластиков.

Когда все эти операции проделаны можно собирать корпус. Собранная нижняя часть корпуса, с «корзиной», жёсткими дисками, приводами, кардридером, дисководом и установленным блоком питания выглядит примерно так:

В полностью собранном виде данный корпус будет выглядеть так:

Самодельный корпус для компьютера после тестирование работы компьютера показал хорошие показатели температурного режима. Стоимость самодельного корпуса получилась значительно ниже, чем специализированные корпуса Middle Tower или Full Tower. Для того чтобы изготовить корпус для компьютера своими руками нужны лишь определенные навыки работы с паяльником и специальным инструментом.

Прошёл буквально год - полтора со времени моего последнего апгрейда ,правда тогда я заменил практически весь системный блок ,и вот уже меня не устраивает производительность компьютера .
Теперь немного информации о моём устаревшем железе:процессор Core2Duo 6300 с рабочей частотой 1800 Ghz, разогнанный до 3000 Ghz с родным куллером,который доблестно справлялся с охлаждением разогнанного процессора ,2GB оперативной памяти DDR 2 800 Transcend,видеокарта GigabiteRadeon 1950Pro c охлаждением Zalman - очень хорошая была в своё время, и установлено всё это добро на материнскую плату Gigabite GA-965P-DS3 самая пристойная по тем временам плата,за что я могу её упрекнуть, - за сильный нагрев северного моста(пришлось поставить 80-мм кулер и стало нормально) и за периодические сбросы настроек разгона в биосе.А так же у меня были: винчестер Seagate 320Gb, привод DVD-RW Philips.

Винчестер решил продать, а вот привод оставляю он мне понравился.
Ну а теперь собственно о том на что я всё это вышеописанное променял.


Начнём с выбора процессора.Процессор я выбирал долго,колебался сначала в сторону Intel, самый оптимальный вариант
Core i5 760 2.80 Ghz/8Mb ,очень хорошая производительность за 210$, но есть и Phenom 2 X4 925 и если уже нет в продаже X4 945
разницы в них почти нет второй на 200 hz , быстрее и имеет боксовый получше,но всё равно я очень рекомендую его заменить, эти
процессоры стоят 137$ и 142$ соответственно, разница в цене ощущается,а что же с производительностью. Phenom 2 немного усупают
в играх, в кодировании видео и архивации равны и проигрывают, не критично в ефективности энергопотребления. А при элементарном
разгоне Phenom 2 X4 925-945 превращаются в Phenom 2 X4 965 3.4 Ghz и теперь разница в производительности в сравнении с Core i5 760
видна только на графиках тестов и то небольшая. По этому я, как экономный пользователь выбрал Phenom 2 X4 925, забегая вперёд скажу
что сейчас работает он у меня на частоте 3.5Ghz при рабочей функции Cool & Cuet , то есть в офисных задачах и интернет его частота составляет
1Ghz.
Теперь что у нас с материнскими платами посмотрим.Мне нужна качественная плата с мощной подсистемой питани я, желательно наличие радиаторов для охлаждения этой самой подсистемы питания и я нашёл такую плату по довольно демократичной цене выбор
пал на ASUS M4A785TD-V EVO стоимостью 97$.


Конкурирующее решение Intel i5 Gigabite GA P-55-UD3L исполнена попроще, стоит дороже, но в целом очень качественная плата, цена 106$.

Выбранная мною плата имеет все необходимые разъёмы, мощную

8+2- фазную подсистему питания,систему охлаждение
силовых элементов, встроенный звук, производительное графическое ядро(мне не нужно,может пригодится,как вот в этой системе
), четыре разъёма под DDR-3 с частотой до 1800 МГц,в плате используются долговечные твердотельные конденсаторы японского производства.В биосе есть возможность разблокировки скрытых ядер процессора функция Advanced Clock Calibration.
Подитожим вышеописанный выбор платформы: в результате выбора процессора AMD я сэкономил 82$.



Отдельного внимания стоит система охлаждения для процессора. Для отвода излишнего тепла от процессора достаточно эффективный,
но тихий куллер, к тому же он не должен разорить экономного пользователя.Я выбрал для своего системного блока куллер японского производства
Scythe Katana-3 на тепловых трубках, ценой в 30$. Эта модель поддерживает практически все виды платформ. Также, комплектный вентилятор обладает широкими пределами регулирования скорости вращения – от 300 до 2500 об/мин.При установке на среднюю скорость вращения вентилятора остаётся весьма эффективным и становится практически бесшумным.



У меня куллер установлен так, что он дополнительно обдувает элементы питания материнской платы. В бесшумном режиме работы температура моего разогнанного до 3.5 Ghz процессора не поднимается выше 60 градусов цельсия.
Модули памяти я выбрал две планки Kingston DDR3-1333 2048MB PC3-10600 (KVR1333D3N9/2G) по цене 44$.
Итого 4GB оперативки стоимостью 88$.



Теперь о видеокарте для большинства это самый "вкусный" компонент системного блока.Я играю в такие игры как:
Modern Warfare-2, METRO-2033, NFS-Shift, а жена играет в KingBounty, Heroes-5, и т.п.,в общем активно играем в современные игры.
Что из видеокарт имеет приемлемую цену в условиях экономического кризиса, а так же высокий уровень производительности?
Правильно это либо Geforce GTS-250 или Radeon 4850,цены у них одинаковые 100-110$, я выбрал последнюю, мне нравятся ATI.


Для меня очень важно что бы охлаждение видеокарты было эффективным в условиях разгона (ну люблю я подразогнать),
а так же тихим, по этому я выбрал продукт MSI c охлаждением на тепловых трубках к тому же по очень хорошей цене 100$.


Максимальная зафиксированная мною температура этой карты 65 градусов цельсия.
Для хранения информации мною были выбраны два жёстких диска ёмкостью 500GB производства Hitachi.
Hitachi Deskstar 7K1000.С 500GB 7200rpm 16МB
- были выбраны мною за демократичную цену,надёжность,и тишину в работе.


Цена 49$ за штуку.
Для такой системы нужен качественный и надёжный блок питания мощностью не менее 500 Watt , к тому же тихий и по разумной цене.
Вот что я выбрал.



Блок питания от FSP Group FSP600-80GLN - качественный 600 ватный БП, с 12 сантиметровым куллером и высоким КПД, меня вполне устраивает.Вот немного внутренностей для любителей залезть внутрь.

Или успокоить уже наличествующий.

Как сделать свой тихий компьютер

Сходу необходимо обмолвиться, что составить тихий и в одно и тоже время сильно высокопроизводительный компьютер на основе бюджетного корпуса, быстрее всего не выйдет. Да и нет особого резона в экономии 100 - 120 $ при всеобщей стоимости системного блока - 1000 - 1500 $. Подразумевается, что необходимо уменьшить шум системного блока, что потребляет 80 - 160 Ватт. Впоследствии речь пойдёт лишь о бюджетном корпусе, какой совместно с блоком питания обходится в 20 - 30 $. Имеется немало типов данных корпусов, но с точки зрения охлаждения они различаются лишь вероятностью монтажа переднего вентилятора.

Источники шума

У настольного компьютера всего два постоянных источника шума, это вентиляторы и жёсткие диски (HDD). Резонатором этой акустической системы служит тонкостенный металлический корпус. Самым простым способом снижения шума вентиляторов является снижение числа оборотов пропеллеров. Снижение же шума HDD потребует серьёзного изменения конструкции корпуса.

Корпус (Case)

Чтобы минимизировать шум вентиляторов, желательно продумать систему охлаждения до покупки корпуса, если конечно он ещё не куплен. На фотографии стрелками показаны направления потоков воздуха, которые легко создать внутри корпусов системных блоков.

Потоки воздуха в системных блоках

1 - вентилятор блока питания, 2 - вентилятор процессора, 3 - вентилятор HDD

1 - вентилятор блока питания, 2 - вентилятор процессора, 3 - вентилятор видео карты, 4 - фронтальный вентилятор HDD.

Какой выбрать корпус для системного блока?

Лучше всего, если удастся подобрать корпус с возможностью установки фронтального вентилятора. Такой корпус позволяет легко снизить температуру HDD на 10-15 градусов без существенного повышения шума. При этом нужно иметь в виду, что снижение температуры HDD на 10 градусов примерно вдвое увеличивает его ресурс.

Видеокарта (Video)

Как выбрать видео карту с учётом простоты охлаждения? В качестве примера приведу варианты охлаждения недорогой видеокарты Radeon 2600Pro. Большинство видеокарт выпускаются в нескольких вариантах, с активным и пассивным охлаждением.

Видеокарты с пассивным охлаждением немного дороже, но зато не содержат высокооборотного малогабаритного вентилятора, который не только является источником шума, но и требует более частого обслуживания, чем вентиляторы большего размера. Главное, при выборе видеокарты, обратить внимание на положение радиатора. Дело в том, что видео карты с пассивным охлаждением и соответственно установленные на них радиаторы бывают двух видов, одни предназначены для вертикальной установки, другие для горизонтальной. На фотографиях одна и та же видеокарта с разными вариантами охлаждения.

1 - с активным охлаждением, 2 - для вертикальной установки, 3 - годится для горизонтальной установки, но в большинстве случаев, радиатор перекроет рядом расположенный разъём PCI(E), 4 - лучше всего подходит для горизонтальной установки. Наиболее подходящая видеокарта с пассивной системой охлаждения для установки в вертикальный корпус под номером 4.

Вентиляторы (Fans)

Как выбрать вентиляторы? Вентиляторы различаются по эффективности, уровню шума и подшипникам, которые в них используются. Но, если за первые два показателя можно немного доплатить, то с подшипниками дело обстоит иначе. Подшипники бывают двух типов - шарикоподшипники и подшипники скольжения. Дело в том, что более дорогие - шарикоподшипники, но и они могут оказаться достаточно шумными через год - другой работы.

Кроме того, у шарикоподшипников в процессе износа шум возрастает сильнее, чем у подшипников скольжения. Подшипники скольжения же, при периодической смазке, могут прослужить долгие годы, причём, уровень их шума при этом не сильно изменится. К счастью, покупка вентилятора на шарикоподшипниках нам не угрожает, так как они в бюджетных вентиляторах не используются, даже если продавец будет вам это клятвенно утверждать.

Также, вам могут предложить корпусные вентиляторы с так называемыми гидро-подшипниками. За это тоже не стоит переплачивать, так как это те же самые подшипники скольжения, во втулках которых имеются канавки улучшающие доступ масла к трущимся поверхностям. Только вот беда в том, что обычно, подшипники начинают изнашиваться не от того, что масло не доставлено в места трения, а из-за недостаточной точности изготовления подшипников, эксцентриситета ротора, из-за отсутствия (высыхания) смазки или изменения её свойств в процессе эксплуатации. Ещё одним «улучшением», которое повышает цены вентилятора, является, так называемая, электромагнитная муфта. Считается, что эта толстая металлическая шайба, с помощью магнитного поля, удерживает вал и таким образом снижает износ подшипника.

Всё бы ничего, да эта шайба значительно укорачивает длину подшипника, что не может ни сказаться на его ресурсе. И за это тоже не стоит переплачивать. И последнее. Если пошевелить крыльчатку за края пальцами, то можно легко определить наличие люфта в подшипнике. Величина люфта обратно пропорциональна ресурсу подшипника. Первичный выбор вентилятора можно сделать и по внешнему виду. Более тихие вентиляторы, как правило, отличаются более аэродинамической формой лопастей крыльчатки и меньшим потребляемым током. Для одинаковых моделей, потребляемый ток может служить косвенным показателем производительности и шума. Обычно потребляемый ток недорогих 80-ти миллиметровых малошумящих вентиляторов лежит в пределах 0.1 - 0,15 Ампера, а 120-ти миллиметровых - 0,15 - 0,25 Ампера. Вот несколько этикеток от бюджетных вентиляторов. Для всех вентиляторов напряжение питания равно 12 Вольтам, но потребляемый ток разный у разных моделей.

На следующей картинке два 80-ти миллиметровых вентилятора приобретённых по одинаковой цене Справа более тихий, но менее производительный.

Покупаем вентилятор

Корпусные вентиляторы могут розниться в цене от 2 до 10 долларов и выше, но и среди недорогих моделей можно выбрать не очень шумные экземпляры. На всех вентиляторах указывается потребляемый ток. Для некоторых моделей приводятся данные об уровне шума. Однако, в любом случае, лучше один раз услышать и почувствовать, чем много раз увидеть. :) Для того чтобы оценить производительность, шум и вибрацию конкретного вентилятора достаточно взять с собой в магазин заранее собранную схему с разъёмом на конце. Сравнивая разные модели и даже экземпляры, можно выбрать достаточно тихие вентиляторы. При испытаниях нужно держать вентилятор в руке, тогда можно будет оценить величину вибрации корпуса.

Назначение контактов (распиновка) разъёмов разных вентиляторов.

Начало нумерации отмечено единицей, как на разъёме вентилятора, так и рядом с разъёмом установленном на материнской плате.

Двухпроводные: 1 - «-» питания 2 - «+» питания Трёхпроводные: 1 - «-» питания 2 - «+» питания 3 - датчик оборотов Четырёхпроводные 1 - «-» питания 2 - «+» питания 3 - датчик оборотов 4 - управление числом оборотов Если на материнской плате имеются четырёхконтактные разъёмы для подключения вентиляторов, то это значит, что материнская плата может изменять число оборотов пропеллеров, в зависимости от температуры. Обычно, для этого требуется установить соответствующую утилиту или включить нужную функцию в BIOS-е.

Изменение частоты вращения лопастей вентилятора

Напряжение питания всех вентиляторов 12 Вольт. Самый простой способ снизить создаваемый вентиляторами шум - уменьшить частоту вращения пропеллеров. Для этого достаточно включить балластный резистор последовательно с вентилятором. Чтобы подобрать необходимое сопротивление и мощность резистора достаточно собрать следующую схему.

Подобрав подходящую величину переменного резистора, можно рассчитать для него необходимую мощность. Мощность резистора будет равна: W=A*U Где: W - необходимая мощность резистора в Ваттах, A - ток протекающий через резистор в Амперах, U - напряжение на резисторе в Вольтах. Хотя, можно поступить и проще. Просто измерить сопротивление переменного резистора R1 и заменить его постоянным такого же сопротивления. Мощность постоянного резистора можно подобрать в соответствии с током указанным на этикетке вентилятора: 0,05 - 0,1А - 0,5 Ватт, 0,1 - 0,2А - 1Ватт 0,2 - 0,3А - 2 Ватта При этом снижать напряжение на вентиляторе ниже 6 вольт не рекомендуется, так как бюджетный вентилятор при более низких напряжениях питания может не запуститься.

Кроме этого, при значительном снижении напряжения, следует произвести ревизию смазки вентилятора, особенно если есть какие-то подозрения. Например, если вентилятор издаёт странные звуки или неуверенно запускается при пониженном напряжении питания. Чтобы сохранить оригинальные разъёмы на материнской плате и вентиляторе, можно изготовить переходники подобной конструкции. Переходники удобны ещё и тем, что позволяют менять балластные резисторы без снятия вентиляторов, что может пригодится при настройке системы охлаждения.

Разъёмы можно использовать любые подходящие, главное не напутать с полярностью. Подходят разъёмы от старых советских телевизоров и кассетных магнитофонов. Несколько примеров установки балластных резисторов.

  1. Установка балластного резистора в блоке питания без использования разъёма (во многих бюджетных блоках этот разъём отсутствует).
  2. Установка балластного резистора на видеокарте с переделкой оригинального разъёма.
  3. Установка балластного резистора с использованием переходника при полном сохранении оригинальных разъёмов.

Блок питания БП (PSU)

Для снижения оборотов пропеллера блока питания придётся блок питания разобрать. Заодно, можно установить и фильтр питания, которого, скорее всего, не будет в вашем бюджетном блоке. Если вентилятор блока питания и после снижения напряжения питания остаётся слишком шумным или его производительность становится недостаточной для поддержания температуры в разумном диапазоне, то на его место следует установить более тихую модель. Для уменьшения сопротивления воздушному потоку, следует отогнуть перегородки в штампованных окошках корпуса блока питания.

Переделка корпуса

Вначале о том, для чего это нужно. Как-то проверяя качество чтения жёсткого диска при помощи программы, которая показывала процесс чтения в реальном времени, я решил постучать карандашом по корпусу системного блока, к которому винчестер был прикручен винтами, как это и полагается исходя из конструкции корпуса. Оказалось, что каждый такой удар сопровождается увеличением времени чтения блоков. Удары же, даже самые незначительные, по самому винчестеру приводили к целому вееру плохо читаемых блоков. А ведь многие компьютерные столы устроены так, что механически соприкасается со столом, по которому иногда приходится стучать кулаком.

В случае же установки двух винчестеров, прибавляются ещё и интерференционные шумы, вызванные биением частот шпинделей этих винчестеров. Эти биения находятся в области низких и инфранизких частот. И если низкие частоты в районе 20 - 50 Герц могут просто раздражать, то инфранизкие частоты могут угнетать нервную систему и пагубно влиять на внутренние органы человека. Так что, применив эластичный подвес для винчестеров, мы убиваем сразу двух зайцев, во-первых, снижаем неприятный шум, а во-вторых, защищаем винчестеры от внешних механических воздействий. Чтобы освободить место для эластичных подвесов и предотвратить касание стенок винчестером, придётся переставить две несущие стенки корпуса, к которым винчестеры крепятся. Для этого сначала удаляем из центра заклёпок остатки штифтов (не знаю, как эти штуки правильно называются), с помощью которых они были развальцованы.

Затем отрезаем развальцованную часть и выбиваем то, что осталось.

Размечаем и сверлим отверстия так, чтобы расстояние между стенками увеличилось на 20 - 30 мм. Диаметр отверстий выбираем, в зависимости от имеющегося в наличии крепежа. Крепим стенки к корпусу. На фотографии крепёж - М2,5мм.

Теперь устанавливаем фронтальный вентилятор. Если передняя стенка системного блока не съёмная, а именно так обычно и бывает в бюджетных блоках, то можно закрепить вентилятор при помощи резинки. Концы резинки нужно просунуть в находящуюся внизу щель между корпусом и передней панелью, а затем продеть через отверстия в корпусе и соответствующие отверстия в вентиляторе.

Затем, следует натянуть резинку за оставшуюся петлю и закрепить в нижней части блока. Конструкция не очень эстетичная, но зато позволяет легко снять и установить вентилятор, когда требуется заменить в нём смазку. Цифрой один на рисунке обозначен фронтальный вентилятор, а цифрой два - отрезки хлорвиниловой трубки, которые предотвращают повреждение эластичных подвесов, о которых будет рассказано ниже.

Для крепления винчестеров потребуется вырезать из пористой резины или из другого достаточно эластичного материала подвесы. На фотографии видно, что у подвесов два ряда отверстий для крепления к корпусу системного блока. Это связано с тем, что отверстия в корпусе винчестеров расположены несимметрично по отношения к их центру тяжести. Разная длина подвесов компенсирует это асимметрию так, чтобы винчестеры располагались параллельно дну системного блока. Если используется фронтальный вентилятор, то длину подвесов желательно отрегулировать так, чтобы винчестеры располагались симметрично и по отношению к вентилятору, для более равномерного охлаждения.

Крепим винчестеры к стенкам, предварительно одев на лапки, торчащие из стенок, отрезки хлорвиниловой трубки. Очень важная деталь, которую автор не взял во внимание. На корпусе работающего жесткого диска скапливается приличный статический заряд, если его не заземлять, то можно повредить электронику жесткого диска. При традиционном креплении винчестера, заряд уходит через металлические винтики на корпус. Поэтому рекомендую к подвесам добавить оголенный с двух сторон медный провод, каждый из концов которого подсунуть под головки винтов. ЗЫ: Кстати можно и не парится с переделкой корпуса, просто подвесив HDD в 5,25 отсеке.

Измерение температуры

Чтобы объективно оценить качество работы системы охлаждения, потребуются электронные термометры. Некоторые узлы компьютера, такие как центральный процессор, процессор видеокарты, HDD имеют встроенные датчики температуры. Однако не стоит ограничиваться только этими данными. Например, если у процессора температура радиатора всего 35 градусов, то вряд ли стоит его сильнее обдувать вне зависимости от температуры кристалла. И наоборот, если датчик показывает температуру 60 градусов, и вы намеряли такую же температуру на радиаторе, то стоит подумать о его обдуве.

У бюджетных блоков питания и вовсе нет датчика температуры, или мне неизвестно, как снять с него показания. Винчестеры Samsung показывают заниженную температуру, причём ошибка меняется в зависимости от значения температуры. Прикасаясь щупом электронного термометра к радиаторам охлаждения можно измерить температуру последних. Для того чтобы измерить температуру радиатора блока питания, нужно просунуть щуп термометра через заднюю решётку.

Регулировка системы охлаждения

Сначала, отключив все вентиляторы и включив тихий компьютер , нужно проследить за повышением температуры. Например, некоторые конфигурации на основе Pentium-а и Celeron-а третьих моделей могли работать с пассивным охлаждением. Однако конструкция бюджетного БП не приспособлена к работе в отсутствие принудительного охлаждения. Поэтому, в любом случае, хотя бы один корпусной вентилятор нам понадобится.

Если единственным вентилятором является вентилятор БП, то весь всасывающийся воздух должен проходить через фронтальные отверстия системного блока, а выходить через выходные отверстия БП за пределы корпуса. И наоборот, если этим вентилятором является фронтальный вентилятор, то корпус системного блока должен быть герметичен, а весь закачиваемый вентилятором воздух должен выходить через выходное отверстие БП. Но стоит забывать, что тогда, при снятии крышки с системного блока, блок питания может перегреться. Пример герметизации системного блока с использованием целлулоида.

Снижая поток воздуха, в условиях максимальной нагрузки и максимальной температуры в комнате, нужно измерять температуру радиаторов. Не стоит доводить температуру выше для: HDD - 40С CPU, VGA, БП - 50С (имеется в виду температура радиаторов) Температура кристаллов может быть выше. Кристаллы кремниевых полупроводниковых приборов нормально переносят температуру 80 и даже 100 градусов, но надежность окружающих их элементов при этом резко падает. Поэтому, важное значение имеет не температура кристалла, которую мы меряем встроенным в кристалл же “термометром”, а температура радиатора, от которого греются окружающие детали. Конечно, если между процессорами и радиаторами есть теплопроводная паста.

Добавить в Анти-Баннер

Как вы считаете, что больше всего интересует наших читателей? Думаете, что разгон процессоров, новые видеокарты или системы охлаждения? Я тоже так полагал, но сейчас вижу, что в корне ошибался. Модернизация системных блоков с вертикальным расположением блока питания – вот, что находится на пике интереса! Вместо того чтобы поиграть, посмотреть телевизор или просто отдохнуть, народ откладывает все дела и садится за написание статей.

Началось всё с замечательной статьи "О модернизации компьютеров с вертикальным блоком питания ". По сути, это руководство по апгрейду, многие положения которого справедливы для любых компьютеров. Затем было опубликовано несколько статей, которые были посвящены именно модернизации "вертикалок", переносу блока питания. В принципе, способов не так уж много, все они достаточно очевидны. После публикации нескольких работ, я решил, что вопрос достаточно освещён и новые статьи на эту тему не нужны. Всем, кто присылал подобные статьи, я отвечал отказом, однако работы продолжали приходить. Под таким напором устоять невозможно и я решил пойти на компромисс – опубликовать некоторые присланные работы, но не растягивать публикацию на неделю, а объединить все в одной статье. Если кого-то этот вопрос не интересует, то он пропустит её, а для остальных есть возможность сравнить несколько способов модернизации.

Модернизация корпуса

Я часто посещаю этот сайт и читаю его материалы. Идея написания этой статьи родилась после прочтения следующих произведений:

реклама

  • Кардинальное изменение корпуса с вертикальным блоком питания
  • Улучшение охлаждения в корпусах с вертикальным БП при минимуме труда и минимуме затрат

Имеется обычный АТХ корпус с вертикальным расположением БП мощностью 300 Ватт. Был он куплен в 2001 году и до конца прошлого года в нем жил Tualatin 1100/1500, под нагрузкой температура процессора достигала 44 o С. Все работало прекрасно до того времени как я занялся кодированием домашнего видео. При продолжительном кодировании компьютер иногда зависал и для повышения надежности я поставил вентилятор от БП на переднюю стенку. Шума от этого практически не добавилось и в таком состоянии это проработало до недавнего времени.

После проведения апгрейта в корпусе поселился Celeron 2000/3000 100/150, этот процессор оказался достаточно горячим по сравнению Tualatin-ом и под нагрузкой достигал температуры 56 o С (хотя в статистике разгона встречаются и более высокие температуры). В играх, тестах и мелких задачах процессор работал вполне стабильно, однако при долгом кодировании зависал и нормально работал только на частоте 2900. Почитав статьи на сайте и добавив свои мысли, я сделал следующее.

© 2024 nimfettamine.ru - Windows. Железо. Программы. Безопасность. Операционные системы