Таксономия нарушений информационной безопасности вычислительной системы. Методы нарушения безопасности информационных систем

Таксономия нарушений информационной безопасности вычислительной системы. Методы нарушения безопасности информационных систем

12.12.2023

Исследования проблем обеспечения информационной безопасности и методов предотвращения нарушений в этой области обозначили необходимость более глубоко разобраться в вопросах информационных конфликтов, часто приводящих к более серьезным последствиям, чем просто фиксация очевидного конфликта и ожидание его затухания или перерастания в правонарушение.

"Конфликт в переводе с латинского, – говорит профессор Т. А. Полякова, – это столкновение противоположно направленных целей, интересов, позиций, мнений или взглядов оппонентов или субъектов взаимодействия". Такие противоречия при построении информационного общества неизбежны, многообразны и всеобъемлющи .

Рассматривая конфликты как объективированную в отношениях субъектов форму противоречий, мы обратили внимание на то, что конфликты возникают как в области социальной сферы, так и в системе информатизации, в информационной инфраструктуре. Они могут быть но значимости и отрицательными относительно решаемых обществом задач, и позитивными, наталкивая ответственных субъектов на поиск новых или более совершенных решений. Конфликт может выполнять роль мотива правонарушения, если он не учтен в процессе его выявления. Чаще всего конфликты проявляются в самом законодательстве в силу его слабой согласованности и недостаточно тщательной подготовленности проектов нормативных актов, а также упущений в процессах правоприменения и исполнения законодательных актов.

Весьма существенны конфликты в области правотворчества в условиях культурного разнообразия и игнорирования исторических факторов при реализации установленных правил, непонимания баланса и согласованности действий в области отношений органов государственной власти и местного самоуправления, юридических лид и граждан. Конфликты возникают по причинам несоблюдения правил работы с информационными технологиями, информационными ресурсами, невыполнения требований к системам коммуникаций. Способы разрешения конфликтов различны и зависят от причин и области их возникновения. Они могут быть погашены в административном, служебном порядке, путем мирного взаимодействия сторон, но могут быть доведены и до судебного рассмотрения. В любом случае наличие конфликта, выявленного и зафиксированного, является условием предотвращения более серьезных ситуаций. Можно сказать, что за каждой формой нарушения правил обеспечения информационной безопасности скрыты выявленные или невыявленные конфликты объективного или субъективного характера. В этой связи в 2008 г. в ИГП РАН был проведен теоретический семинар на тему "Конфликты в информационной сфере", материалы которого опубликованы в одноименном сборнике статей и выступлений его участников.

Не все виды конфликтов перерастают в правонарушения или тем более в преступления.

С учетом значимости конфликта в рассматриаемой области общественных отношений важно сформулировать понятие юридически значимого конфликта в информационной среде (сфере) следующим образом. Юридически значимым конфликтом является создание ситуации нестабильности в реализации законных прав и интересов граждан, государства, общества, отдельных организаций в их информационной среде, ситуации, снижающей уровень обеспечения безопасности, в том числе ведущей к созданию угроз, рисков и разрушений в самой информационной инфраструктуре или в области прав субъектов – участников информационных отношений и процессов. И это было освещено в предыдущих главах учебника, а также в работах С. И. Семилетова. Отметим, что конфликты ведут к подрыву значимости информации в процессе развития информационного, гражданского, демократического, социального, устойчивого правового и гуманного общества

Классификация источников угроз

Классификация угроз информационной безопасности

Тема 2 - Угрозы информационной безопасности

Понятия угрозы безопасности объекта и уязвимости объекта были введены ранее. Для полного представления взаимодействия угрозы и объекта защиты введем понятия источника угрозы и атаки.

Угроза безопасности объекта - возможное воздействие на объект, которое прямо или косвенно может нанести ущерб его безопасности.

Источник угрозы - это потенциальные антропогенные , техногенные или стихийные носители угрозы безопасности.

Уязвимость объекта - это присущие объекту причины, приводящие к нарушению безопасности информации на объекте.

Атака - это возможные последствия реализации угрозы при взаимодействии источника угрозы через имеющиеся уязвимости. Атака - это всегда пара «источник - уязвимость», реализующая угрозу и приводящая к ущербу.

Рисунок 2.1

Предположим , студент ходит на учебу каждый день и при этом пересекает проезжую часть в неположенном месте. И однажды он попадает под машину, что причиняет ему ущерб, при котором он теряет трудоспособность и не может посещать занятия. Проанализируем данную ситуацию. Последствия в данном случае - это убытки, которые студент понес в результате несчастного случая. Угрозой у нас выступает автомобиль, который сбил студента. Уязвимостью явилось то, что студент пересекал проезжую часть в неустановленном месте. А источником угрозы в данной ситуации явилась та некая сила, которая не дала возможности водителю избежать наезда на студента.

С информацией не намного сложнее . Угроз безопасности информации не так уж и много. Угроза, как следует из определения, - это опасность причинения ущерба, то есть в этом определении проявляется жесткая связь технических проблем с юридической категорией, каковой является «ущерб».

Проявления возможного ущерба могут быть различны:

Моральный и материальный ущерб деловой репутации организации;

Моральный, физический или материальный ущерб, связанный с разглашением персональных данных отдельных лиц;

Материальный (финансовый) ущерб от разглашения защищаемой (конфиденциальной) информации;

Материальный (финансовый) ущерб от необходимости восстановления нарушенных защищаемых информационных ресурсов;

Материальный ущерб (потери) от невозможности выполнения взятых на себя обязательств перед третьей стороной;

Моральный и материальный ущерб от дезорганизации деятельности организации;

Материальный и моральный ущерб от нарушения международных отношений.

Угрозами безопасности информации являются нарушения при обеспечении:


2. Доступности;

3. Целостности.

Конфиденциальность информации - это свойство информации быть известной только аутентифицированным законным ее владельцам или пользователям.

Нарушения при обеспечении конфиденциальности:

Хищение (копирование) информации и средств ее обработки;

Утрата (неумышленная потеря, утечка) информации и средств ее обработки.

Доступность информации - это свойство информации быть доступной для аутентифицированных законных ее владельцев или пользователей.

Нарушения при обеспечении доступности:

Блокирование информации;

Уничтожение информации и средств ее обработки.

Целостность информации - это свойство информации быть неизменной в семантическом смысле при воздействии на нее случайных или преднамеренных искажений или разрушающих воздействий.

Нарушения при обеспечении целостности:

Модификация (искажение) информации;

Отрицание подлинности информации;

Навязывание ложной информации.

Носителями угроз безопасности информации являются источники угроз. В качестве источников угроз могут выступать как субъекты (личность), так и объективные проявления. Причем, источники угроз могут находиться как внутри защищаемой организации - внутренние источники, так и вне ее - внешние ис-точники.

Все источники угроз безопасности информации можно разделить на три основные группы:

1 Обусловленные действиями субъекта (антропогенные источники угроз).

2 Обусловленные техническими средствами (техногенные источники угрозы).

3 Обусловленные стихийными источниками.

Антропогенными источниками угроз безопасности информации выступают субъекты, действия которых могут быть квалифицированы как умышленные или случайные преступления. Только в этом случае можно говорит о причинении ущерба. Эта группа наиболее обширна и представляет наибольший интерес с точки зрения организации защиты, так как действия субъекта всегда можно оценить, спрогнозировать и принять адекватные меры. Методы противодействия в этом случае управляемы и напрямую зависят от воли организаторов защиты информации.

В качестве антропогенного источника угроз можно рассматривать субъекта, имеющего доступ (санкционированный или несанкционированный) к работе со штатными средствами защищаемого объекта. Субъекты (источники), действия которых могут привести к нарушению безопасности информации, могут быть как внешние, так и внутренние. Внешние источники могут быть случайными или пред-намеренными и иметь разный уровень квалификации.

Внутренние субъекты (источники), как правило, представляют собой высококвалифицированных специалистов в области разработки и эксплуатации программного обеспечения и технических средств, знакомы со спецификой решаемых задач, структурой и основными функциями и принципами работы программно-аппаратных средств защиты информации, имеют возможность использования штатного оборудования и технических средств сети.

Необходимо учитывать также, что особую группу внутренних антропогенных источников составляют лица с нарушенной психикой и специально внедренные и завербованные агенты, которые могут быть из числа основного, вспомогательного и технического персонала, а также представителей службы защиты информации. Данная группа рассматривается в составе перечисленных выше источников угроз, но методы парирования угрозам для этой группы могут иметь свои отличия.

Вторая группа содержит источники угроз, определяемые технократической деятельностью человека и развитием цивилизации. Однако последствия, вызванные такой деятельностью, вышли из-под контроля человека и существуют сами но себе. Данный класс источников угроз безопасности информации особенно актуален в современных условиях, так как в сложившихся условиях эксперты ожидают резкого роста числа техногенных катастроф, вызванных физическим и моральным устареванием используемого оборудования, а также отсутствием материальных средств на его обновление. Технические средства, являющиеся источниками потенциальных угроз безопасности информации, также могут быть внешними и внутренними.

Третья группа источников угроз объединяет обстоятельства, составляющие непреодолимую силу, то есть такие обстоятельства, которые носят объективный и абсолютный характер, распространяющийся на всех. К непреодолимой силе в законодательстве и договорной практике относят стихийные бедствия или иные обстоятельства, которые невозможно предусмотреть или предотвратить или возможно предусмотреть, но невозможно предотвратить при современном уровне че-ловеческого знания и возможностей. Такие источники угроз совершенно не поддаются прогнозированию, и поэтому меры защиты от них должны применяться всегда.

Стихийные источники потенциальных угроз информационной безопасности, как правило, являются внешними по отношению к защищаемому объекту и под ними понимаются, прежде всего, природные катаклизмы.

Классификация и перечень источников угроз приведены в таблице 2.1.

Таблица 2.1 - Классификация и перечень источников угроз информационной безопасности

Антропогенные источники Внешние Криминальные структуры
Потенциальные преступники и хакеры
Недобросовестные партнеры
Технический персонал поставщиков телекоммуникационных услуг
Представители надзорных организаций и аварийных служб
Представители силовых структур
Внутренние Основной персонал (пользователи, программисты, разработчики)
Представители службы защиты информации (администраторы)
Вспомогательный персонал (уборщики, охрана)
Технический персонал (жизнеобеспечение, эксплуатация)
Техногенные источники Внешние Средства связи
Сети инженерных коммуникации (водоснабжения, канализации)
Транспорт
Внутренние Некачественные технические средства обработки информации
Некачественные программные средства обработки информации
Вспомогательные средства (охраны, сигнализации, телефонии)
Другие технические средства, применяемые в учреждении
Стихийные источники Внешние Пожары
Землетрясения
Наводнения
Ураганы
Магнитные бури
Радиоактивное излучение
Различные непредвиденные обстоятельства
Необъяснимые явления
Другие форс-мажорные обстоятельства

Все источники угроз имеют разную степень опасности К опуг, которую можно количественно оценить, проведя их ранжирование. При этом оценка степени опасности проводится по косвенным показателям.

В качестве критериев сравнения (показателей) можно выбрать:

Возможность возникновения источника K 1 - определяет степень доступности к возможности использовать уязвимость для антропогенных источников, удаленность от уязвимости для техногенных источников или особенности обстановки для случайных источников;

Готовность источника К 2 - определяет степень квалификации и привлекательность совершения деяний со стороны источника угрозы для антропогенных источников или наличие необходимых условий для техногенных и стихийных источников;

Фатальность К 3 - определяет степень неустранимости последствий реализации угрозы.

Каждый показатель оценивается экспертно-аналитическим методом по пятибалльной системе. Причем, 1 соответствует самой минимальной степени влияния оцениваемого показателя на опасность использования источника, а 5 - максимальной.

К опуг для отдельного источника можно определить как отношение произведения вышеприведенных показателей к максимальному значению (125):

Угрозы , как возможные опасности совершения какого-либо действия, направленного против объекта защиты, проявляются не сами по себе, а через уязвимости, приводящие к нарушению безопасности информации на конкретном объекте информатизации.

Уязвимости присущи объекту информатизации, неотделимы от него и обусловливаются недостатками процесса функционирования, свойствами архитектуры автоматизированных систем, протоколами обмена и интерфейсами, применяемыми программным обеспечением и аппаратной платформой, условиями эксплуатации и расположения.

Источники угроз могут использовать уязвимости для нарушения безопасности информации, получения незаконной выгоды (нанесения ущерба собственнику, владельцу, пользователю информации). Кроме того, возможны не злонамеренные действия источников угроз по активизации тех или иных уязвимостей, наносящих вред.

Каждой угрозе могут быть сопоставлены различные уязвимости. Устранение или существенное ослабление уязвимостей влияет на возможность реализации угроз безопасности информации.

Уязвимости безопасности информации могут быть:

Объективными;

Субъективными;

Случайными.

Объективные уязвимости зависят от особенностей построения и технических характеристик оборудования, применяемого на защищаемом объекте. Полное устранение этих уязвимостей невозможно, но они могут существенно ослабляться техническими и инженерно-техническими методами парирования угроз безопасности информации.

Субъективные уязвимости зависят от действий сотрудников и, в основном устраняются организационными и программно-аппаратными методами.

Случайные уязвимости зависят от особенностей окружающей защищаемый объект среды и непредвиденных обстоятельств. Эти факторы, как правило, мало предсказуемы и их устранение возможно только при проведении комплекса организационных и инженерно-технических мероприятий по противодействию, угрозам информационной безопасности.

Классификация и перечень уязвимостей информационной безопасности приведены в таблице 2.2.

Таблица 2.2 - Классификация и перечень уязвимостей информационной безопасности

Объективные уязвимости Сопутствующие техническим средствам излучения Электромагнитные Побочные излучения элементов технических средств
Кабельных линий технических средств
Излучения на частотах работы генераторов
На частотах самовозбуждения усилителей
Электрические Наводки электромагнитных излучений на линии и проводники
Просачивание сигналов в цепи электропитания, в цепи заземления
Неравномерность потребления тока электропитания
Звуковые Акустические
Виброакустические
Активизируемые Аппаратные закладки устанавливаемые В телефонные линии
В сети электропитания
В помещениях
В технических средствах
Программные закладки Вредоносные программы
Технологические выходы из программ
Нелегальные копии ПО
Определяемые особенностями элементов Элементы, обладающие электроакустическими преобразованиями Телефонные аппараты
Громкоговорители и микрофоны
Катушки индуктивности
Дроссели
Трансформаторы и пр.
Элементы, подверженные воздействию электромагнитного поля Магнитные носители
Микросхемы
Нелинейные элементы, подверженные ВЧ навязыванию
Определяемые особенностями защищаемого объекта Местоположением объекта Отсутствие контролируемой зоны
Наличие прямой видимости объектов
Удаленных и мобильных элементов объекта
Вибрирующих отражающих поверхностей
Организацией каналов обмена информацией Использование радиоканалов
Глобальных информационных сетей
Арендуемых каналов
Субъективные уязвимости Ошибки (халатность) При подготовке и использовании программного обеспечения При разработке алгоритмов и программного обеспечения
При инсталляции и загрузке программного обеспечения
При эксплуатации программного обеспечения
При вводе данных (информации)
При настройке сервисов универсальных систем
Самообучающейся (самонастраивающейся) сложной системы систем
При эксплуатации технических средств При включении/выключении технических средств
При использовании технических средств охраны
Некомпетентные действия При конфигурировании и управлении сложной системы
При настройке программного обеспечения
При организации управления потоками обмена информации
При настройке технических средств
При настройке штатных средств защиты программного обеспечения
Неумышленные действия Повреждение (удаление) программного обеспечения
Повреждение (удаление) данных
Повреждение (уничтожение) носителей информации
Повреждение каналов связи
Нарушения Режима охраны и защиты Доступа на объект
Доступа к техническим средствам
Соблюдения конфиденциальности
Режима эксплуатации технических средств и ПО Энергообеспечения
Жизнеобеспечения
Установки нештатного оборудования
Инсталляции нештатного ПО (игрового, обучающего, технологического)
Использования информации Обработки и обмена информацией
Хранения и уничтожения носителей информации
Уничтожения производственных отходов и брака
Психогенные Психологические Антагонистические отношения (зависть, озлобленность, обида)
Неудовлетворенность своим положением
Неудовлетворенность действиями руководства (взыскание, увольнение)
Психологическая несовместимость
Психические Психические отклонения
Стрессовые ситуации
Физиологические Физическое состояние (усталость, болезненное состояние)
Психосоматическое состояние
Случайные уязвимости Сбои и отказы Отказы и неисправности технических средств Обрабатывающих информацию
Обеспечивающих работоспособность средств обработки информации
Обеспечивающих охрану и контроль доступа
Старение и размагничивание носителей информации Дискет и съемных носителей
Жестких дисков
Элементов микросхем
Кабелей и соединительных линий
Сбои программного обеспечения Операционных систем и СУБД
Прикладных программ
Сервисных программ
Антивирусных программ
Сбои электроснабжения Оборудования, обрабатывающего информацию
Обеспечивающего и вспомогательного оборудования

Все уязвимости имеют разную степень опасности K опуяз, которую можно количественно оценить, проведя их ранжирование.

При этом в качестве критериев сравнения можно выбрать:

Фатальность K 4 - определяет степень влияния уязвимости на неустранимость последствий реализации угрозы;

Доступность K 5 - определяет возможность использования уязвимости источником угроз;

Количество K 6 - определяет количество элементов объекта, которым характерен та или иная уязвимость.

K опуяз для отдельной уязвимости можно определить как отношение произведения вышеприведенных показателей к максимальному значению (125):

Модель нарушителя информационной безопасности - это набор предположений об одном или нескольких возможных нарушителях информационной безопасности, их квалификации, их технических и материальных средствах и т. д.

Правильно разработанная модель нарушителя является гарантией построения адекватной системы обеспечения информационной безопасности. Опираясь на построенную модель, уже можно строить адекватную систему информационной защиты.

Чаще всего строится неформальная модель нарушителя, отражающая причины и мотивы действий, его возможности, априорные знания, преследуемые цели, их приоритетность для нарушителя, основные пути достижения поставленных целей: способы реализации исходящих от него угроз, место и характер действия, возможная тактика и т. п. Для достижения поставленных целей нарушитель должен приложить определенные усилия и затратить некоторые ресурсы.

Определив основные причины нарушений, представляется возможным оказать на них влияние или необходимым образом скорректировать требования к системе защиты от данного типа угроз. При анализе нарушений защиты необходимо уделять внимание субъекту (личности) нарушителя. Устранение причин или мотивов, побудивших к нарушению, в дальнейшем может помочь избежать повторения подобного случая.

Модель может быть не одна, целесообразно построить несколько отличающихся моделей разных типов нарушителей информационной безопасности объекта защиты.

Для построения модели нарушителя используется информация, полученная от служб безопасности и аналитических групп, данные о существующих средствах доступа к информации и ее обработки, о возможных способах перехвата данных на стадиях их передачи, обработки и хранении, об обстановке в коллективе и на объекте защиты, сведения о конкурентах и ситуации на рынке, об имевших место свершившихся случаях нарушения информационной безопасности и т. п.

Кроме этого оцениваются реальные оперативные технические возможности злоумышленника для воздействия на систему защиты или на защищаемый объект. Под техническими возможностями подразумевается перечень различных технических средств, которыми может располагать нарушитель в процессе совершения действий, направленных против системы информационной защиты.

Нарушители бывают внутренними и внешними.

Среди внутренних нарушителей в первую очередь можно выделить:

Непосредственных пользователей и операторов информационной системы, в том числе руководителей различных уровней;

Администраторов вычислительных сетей и информационной безопасности;

Прикладных и системных программистов;

Сотрудников службы безопасности;

Технический персонал по обслуживанию зданий и вычислительной техники, от уборщицы до сервисного инженера;

Вспомогательный персонал и временных работников.

Среди причин, побуждающих сотрудников к неправомерным действиям, можно указать следующие:

Безответственность;

Ошибки пользователей и администраторов;

Демонстрацию своего превосходства (самоутверждение);

- «борьбу с системой»;

Корыстные интересы пользователей системы;

Недостатки используемых информационных технологий.

Группу внешних нарушителей могут составлять:

Клиенты;

Приглашенные посетители;

Представители конкурирующих организаций;

Сотрудники органов ведомственного надзора и управления;

Нарушители пропускного режима;

Наблюдатели за пределами охраняемой территории.

Помимо этого классификацию можно проводить по следующим параметрам.

Используемые методы и средства:

Сбор информации и данных;

Пассивные средства перехвата;

Использование средств, входящих в информационную систему или систему ее защиты, и их недостатков;

Активное отслеживание модификаций существующих средств обработки информации, подключение новых средств, использование специализированных утилит, внедрение программных закладок и «черных ходов» в систему, подключение к каналам передачи данных.

Уровень знаний нарушителя относительно организации информационной структуры:

Типовые знания о методах построения вычислительных систем, сетевых протоколов, использование стандартного набора программ;

Высокий уровень знаний сетевых технологий, опыт работы со специализированными программными продуктами и утилитами;

Высокие знания в области программирования, системного проектирования и эксплуатации вычислительных систем;

Обладание сведениями о средствах и механизмах защиты атакуемой системы;

Нарушитель являлся разработчиком или принимал участие в реализации системы обеспечения информационной безопасности.

Время информационного воздействия:

В момент обработки информации;

В момент передачи данных;

В процессе хранения данных (учитывая рабочее и нерабочее состояния системы).

По месту осуществления воздействия:

Удаленно с использованием перехвата информации, передающейся по каналам передачи данных, или без ее использования;

Доступ на охраняемую территорию;

Непосредственный физический контакт с вычислительной техникой, при этом можно выделить: доступ к рабочим станциям, доступ к серверам предприятия, доступ к системам администрирования, контроля и управления информационной системой, доступ к программам управления системы обеспечения информационной безопасности.

В таблице 2.3 приведены примеры моделей нарушителей информационной безопасности и их сравнительная характеристика.

Таблица 2.3 - Сравнительная характеристика нескольких моделей нарушителя

Характеристика Хакер-одиночка Группа хакеров Конкуренты Госструктуры, спецподразделения
Вычислительная мощность технических средств Персональный компьютер ЛВС, использование чужих вычислительных сетей Мощные вычислительные сети Неограниченная вычислительная мощность
Доступ к интернету, тип каналов доступа Модем или выделенная линия Использование чужих каналов с высокой пропускной способностью Собственные каналы с высокой пропускной способностью Самостоятельный контроль над маршрутизацией трафика в Интернете
Финансовые возможности Сильно ограничены Ограничены Большие возможности Практически неограниченные
Уровень знаний в области IT Невысокий Высокий Высокий Высокий, разработчики стандартов
Используемые технологии Готовые программы, известные уязвимости Поиск новых уязвимостей, изготовление вредоносных программ Современные методы проникновения в информационные системы и воздействия на потоки данных в ней Доскональные знания информационных технологий: возможные уязвимости и недостатки
Знания о построении системы защиты объекта Недостаточные знания о построении информационной системы Могут предпринимать усилия для получения представления о принципах функционирования системы защиты Могут предпринимать усилия для получения представления о принципах функционирования системы защиты, внедрять своего представителя в службу безопасности В процессе сертификации системы представители госорганов могут получать достаточно полную информацию о ее построении
Преследуемые цели Эксперимент Внесение искажений в работу системы Блокировка функционирования системы, подрыв имиджа, разорение Непредсказуемые
Характер действий Скрытый Скрытый Скрытый или открытый демонстративный Может не утруждать себя сокрытием своих действий
Глубина проникновения Чаще всего останавливается после первого успешного воздействия До момента достижения поставленной цели или появления серьезного препятствия До победного конца Ничего не способно их остановить
Конечные пользовательские устройства, как правило, довольно успешно защищаются антивирусными программами и программными межсетевыми экранами (брандмауэры, файрволы ). Компьютерные сети в комплексе защитить сложнее. Одним программным обеспечением здесь не обойтись. Решением вопроса обеспечения безопасности компьютерных сетей является установка межсетевых экранов в программно-аппаратном исполнении на границе сетей.

В основные задачи межсетевых экранов входит защита компьютеров от вторжения злоумышленников из внешней сети и последствий такого вторжения – утечки/изменения информации. Устанавливая межсетевой экран с требуемой конфигурацией на границу с внешней сетью, можно быть уверенным в том, что Ваш компьютер будет "невидим" извне (если только политикой администрирования не предусмотрен доступ к нему). Современные межсетевые экраны работают по принципу "запрещено все, что не разрешено", то есть Вы сами решаете для какого протокола или программы разрешить доступ во внутреннюю сеть .

Помимо функций сетевой защиты, межсетевой экран обеспечивает возможность нормального функционирования сетевых приложений.

Безусловно, межсетевой экран – это не панацея от всех бед компьютерного мира. Всегда необходимо принимать во внимание " человеческий фактор ", так как именно человек неосознанно (а порой и целенаправленно) может нанести вред информационной системе, выполнив действия, нарушающие политику безопасности. Это может быть утечка информации через подключение внешних носителей, установление дополнительного незащищенного Интернет -подключения, умышленное изменение информации санкционированным пользователем и т.п.

В данной книге предлагаются к рассмотрению условия и предпосылки возникновения угроз при хранении информации и передаче ее по сетям и системам связи, методы предупреждения угроз, защиты и обеспечения безопасности информации в целом, а также технологии и методы, позволяющие обеспечивать работу и безопасность сетей, на примере межсетевых экранов и Интернет -маршрутизаторов D-Link.

Обозначения, используемые в курсе

В курсе используются следующие пиктограммы для обозначения сетевых устройств и соединений:

Термины и определения в области информационной безопасности

Прежде всего, необходимо определиться с основными понятиями и терминами, относящимися к информационной безопасности.

В широком смысле информационная система есть совокупность технического, программного и организационного обеспечения, а также персонала, предназначенная для того, чтобы своевременно обеспечивать пользователей системы нужной информацией.

Информационная безопасность – защита конфиденциальности, целостности и доступности информации.

  • Конфиденциальность : доступ к информационным ресурсам только авторизованным пользователям.
  • Целостность : неизменность информации в процессе ее передачи или хранения.
  • Доступность : свойство информационных ресурсов, определяющее возможность получения и использования информационных данных авторизованными пользователями в каждый момент времени.

Безопасность информации – состояние защищенности хранимой информации от негативных воздействий.

Сетевая безопасность – это набор требований, предъявляемых к инфраструктуре компьютерной сети предприятия и политикам работы в ней, при выполнении которых обеспечивается защита сетевых ресурсов от несанкционированного доступа.

Под сетевой безопасностью принято понимать защиту информационной инфраструктуры объекта (при помощи аутентификации, авторизации, межсетевых экранов, систем обнаружения вторжений IDS/IPS и других методов) от вторжений злоумышленников извне, а также защиту от случайных ошибок (с применением технологий DLP ) или намеренных действий персонала, имеющего доступ к информации внутри самого предприятия. DLP ( Data Leak Prevention ) – это современные технологии защиты конфиденциальной информации от возможных утечек из информационной системы с применением программных или программно-аппаратных средств. Каналы утечки могут быть сетевые (например, электронная почта ) либо локальные (с использованием внешних накопителей).

Аутентификация ( Authentication ) – процедура проверки идентификационных данных пользователя (чаще всего, логина и пароля) при доступе к информационной системе.

Авторизация ( Authorization ) – предоставление определенному пользователю прав на выполнение некоторых действий. Авторизация происходит после аутентификации и использует идентификатор пользователя для определения того к каким ресурсам он имеет доступ . В информационных технологиях с помощью авторизации устанавливаются и реализуются права доступа к ресурсам и системам обработки данных.

Аутентичность в передаче и обработке данных – целостность информации, подлинность того, что данные были созданы законными участниками информационного процесса, и невозможность отказа от авторства.

Защита информации представляет собой деятельность , направленную на предотвращение утечки защищаемой информации, несанкционированных и непреднамеренных (случайных) воздействий на защищаемую информацию.

Возможные объекты воздействия в информационных системах:

  • аппаратное обеспечение;
  • программное обеспечение;
  • коммуникации (обеспечение передачи и обработки данных через каналы связи и коммутационное оборудование);
  • персонал.

Объектами воздействия с целью нарушения конфиденциальности, целостности или доступности информации могут быть не только элементы информационной системы, но и поддерживающей ее инфраструктуры, которая включает в себя сети инженерных коммуникаций (системы электро-, теплоснабжения, кондиционирования и др.). Кроме того, следует обращать внимание на территориальное размещение технических средств, которое следует размещать на охраняемой территории. Беспроводное оборудование рекомендуется устанавливать так, чтобы зона действия беспроводной сети не выходила за пределы контролируемой зоны.

Учитывая широкий спектр воздействия угроз, к защите информации необходим комплексный подход .

Контролируемая зона – это охраняемое пространство (территория, здание, офис и т.п.), в пределах которого располагается коммуникационное оборудование и все точки соединения локальных периферийных устройств информационной сети предприятия.

Правила разграничения доступа – совокупность правил, регламентирующих права доступа пользователей к ресурсам информационной системы.

Санкционированный доступ к информации не нарушает правил разграничения доступа.

Несанкционированный доступ (несанкционированные действия) – доступ к информации или действия с информацией, осуществляемые с нарушением установленных прав и/или правил разграничения доступа к информации.

Общая классификация угроз информационной безопасности

Угрозы безопасности информационных систем классифицируются по нескольким признакам (рис. 1.1).

Угрозы нарушения конфиденциальности направлены на получение (хищение) конфиденциальной информации. При реализации этих угроз информация становится известной лицам, которые не должны иметь к ней доступ . Несанкционированный доступ к информации, хранящейся в информационной системе или передаваемой по каналам (сетям) передачи данных, копирование этой информации является нарушением конфиденциальности информации.

Угрозы нарушения целостности информации , хранящейся в информационной системе или передаваемой посредством сети передачи данных , направлены на изменение или искажение данных, приводящее к нарушению качества или полному уничтожению информации. Целостность информации может быть нарушена намеренно злоумышленником, а также в результате объективных воздействий со стороны среды, окружающей систему (помехи). Эта угроза особенно актуальна для систем передачи информации – компьютерных сетей и систем телекоммуникаций. Умышленные нарушения целостности информации не следует путать с ее санкционированным изменением, которое выполняется авторизованными пользователями с обоснованной целью.

Угрозы нарушения доступности системы (отказ в обслуживании) направлены на создание таких ситуаций, когда определённые действия либо снижают работоспособность информационной системы, либо блокируют доступ к некоторым её ресурсам.

Причины случайных воздействий :

  • аварийные ситуации из-за стихийных бедствий и отключения электроэнергии;
  • ошибки в программном обеспечении;
  • ошибки в работе обслуживающего персонала и пользователей;
  • помехи в линии связи из-за воздействия внешней среды, а также вследствие плотного трафика в системе (характерно для беспроводных решений).

Преднамеренные воздействия связаны с целенаправленными действиями злоумышленника, в качестве которого может выступить любое заинтересованное лицо (конкурент, посетитель, персонал и т.д.). Действия злоумышленника могут быть обусловлены разными мотивами: недовольством сотрудника своей карьерой, материальным интересом, любопытством, конкуренцией, стремлением самоутвердиться любой ценой и т.п.

Внутренние угрозы инициируются персоналом объекта, на котором установлена система, содержащая конфиденциальную информацию. Причинами возникновения таких угроз может послужить нездоровый климат в коллективе или неудовлетворенность от выполняемой работы некоторых сотрудников, которые могут предпринять действия по выдаче информации лицам, заинтересованным в её получении.

Также имеет место так называемый " человеческий фактор ", когда человек не умышленно, по ошибке, совершает действия, приводящие к разглашению конфиденциальной информации или к нарушению доступности информационной системы. Большую долю конфиденциальной информации злоумышленник (конкурент) может получить при несоблюдении работниками-пользователями компьютерных сетей элементарных правил защиты информации. Это может проявиться, например, в примитивности паролей или в том, что сложный пароль пользователь хранит на бумажном носителе на видном месте или же записывает в текстовый файл на жестком диске и пр. Утечка конфиденциальной информации может происходить при использовании незащищенных каналов связи, например, по телефонному соединению.

Под внешними угрозами безопасности понимаются угрозы, созданные сторонними лицами и исходящие из внешней среды, такие как:

  • атаки из внешней сети (например, Интернет), направленные на искажение, уничтожение, хищение информации или приводящие к отказу в обслуживании информационных систем предприятия;
  • распространение вредоносного программного обеспечения;
  • нежелательные рассылки (спам);
  • воздействие на информацию, осуществляемое путем применения источника электромагнитного поля для наведения в информационных системах электромагнитной энергии с уровнем, вызывающим нарушение нормального функционирования (сбой в работе) технических и программных средств этих систем;
  • перехват информации с использованием радиоприемных устройств;
  • воздействие на информацию, осуществляемое путем несанкционированного использования сетей инженерных коммуникаций;
  • воздействие на персонал предприятия с целью получения конфиденциальной информации.

В современном мире, когда стало возможным применять сервисы и службы с использованием информационной коммуникационной среды (электронные платежи, Интернет -магазины, электронные очереди и т.п.), многократно увеличивается риск именно внешних угроз.

Как правило, несанкционированный доступ , перехват, хищение информации, передаваемой по каналам связи, проводится средствами технической разведки, такими как радиоприемные устройства, средства съема акустической информации, системы перехвата сигналов с компьютерных сетей и контроля телекоммуникаций, средства съема информации с кабелей связи и другие.

Быстро развивающиеся компьютерные информационные технологии вносят заметные изменения в нашу жизнь. Информация стала товаром, который можно приобрести, продать, обменять. При этом стоимость информации часто в сотни раз превосходит стоимость компьютерной системы, в которой она хранится.

От степени безопасности информационных технологий в настоящее время зависит благополучие, а порой и жизнь многих людей. Такова плата за усложнение и повсеместное распространение автоматизированных систем обработки информации.

Под информационной безопасностью понимается защищенность информационной системы от случайного или преднамеренного вмешательства, наносящего ущерб владельцам или пользователям информации.

На практике важнейшими являются три аспекта информационной безопасности:

  • доступность (возможность за разумное время получить требуемую информационную услугу);
  • целостность (актуальность и непротиворечивость информации, ее защищенность от разрушения и несанкционированного изменения);
  • конфиденциальность (защита от несанкционированного прочтения).

Нарушения доступности, целостности и конфиденциальности информации могут быть вызваны различными опасными воздействиями на информационные компьютерные системы.

Основные угрозы информационной безопасности

Современная информационная система представляет собой сложную систему, состоящую из большого числа компонентов различной степени автономности, которые связаны между собой и обмениваются данными. Практически каждый компонент может подвергнуться внешнему воздействию или выйти из строя. Компоненты автоматизированной информационной системы можно разбить на следующие группы:

  • аппаратные средства - компьютеры и их составные части (процессоры, мониторы, терминалы, периферийные устройства - дисководы, принтеры, контроллеры, кабели, линии связи и т.д.);
  • программное обеспечение - приобретенные программы, исходные, объектные, загрузочные модули; операционные системы и системные программы (компиляторы, компоновщики и др.), утилиты, диагностические программы и т.д.;
  • данные - хранимые временно и постоянно, на магнитных носителях, печатные, архивы, системные журналы и т.д.;
  • персонал - обслуживающий персонал и пользователи.

Опасные воздействия на компьютерную информационную систему можно подразделить на случайные и преднамеренные. Анализ опыта проектирования, изготовления и эксплуатации информационных систем показывает, что информация подвергается различным случайным воздействиям на всех этапах цикла жизни системы. Причинами случайных воздействий при эксплуатации могут быть:

  • аварийные ситуации из-за стихийных бедствий и отключений электропитания;
  • отказы и сбои аппаратуры;
  • ошибки в программном обеспечении;
  • ошибки в работе персонала;
  • помехи в линиях связи из-за воздействий внешней среды.

Преднамеренные воздействия - это целенаправленные действия нарушителя. В качестве нарушителя могут выступать служащий, посетитель, конкурент, наемник. Действия нарушителя могут быть обусловлены разными мотивами:

  • недовольством служащего своей карьерой;
  • взяткой;
  • любопытством;
  • конкурентной борьбой;
  • стремлением самоутвердиться любой ценой.

Можно составить гипотетическую модель потенциального нарушителя:

  • квалификация нарушителя на уровне разработчика данной системы;
  • нарушителем может быть как постороннее лицо, так и законный пользователь системы;
  • нарушителю известна информация о принципах работы системы;
  • нарушитель выбирает наиболее слабое звено в защите.

Наиболее распространенным и многообразным видом компьютерных нарушений является несанкционированный доступ (НСД). НСД использует любую ошибку в системе защиты и возможен при нерациональном выборе средств защиты, их некорректной установке и настройке.

Проведем классификацию каналов НСД, по которым можно осуществить хищение, изменение или уничтожение информации:

  • Через человека:
    • хищение носителей информации;
    • чтение информации с экрана или клавиатуры;
    • чтение информации из распечатки.
  • Через программу:
    • перехват паролей;
    • дешифровка зашифрованной информации;
    • копирование информации с носителя.
  • Через аппаратуру:
    • подключение специально разработанных аппаратных средств, обеспечивающих доступ к информации;
    • перехват побочных электромагнитных излучений от аппаратуры, линий связи, сетей электропитания и т.д.

Особо следует остановиться на угрозах, которым могут подвергаться компьютерные сети. Основная особенность любой компьютерной сети состоит в том, что ее компоненты распределены в пространстве. Связь между узлами сети осуществляется физически с помощью сетевых линий и программно с помощью механизма сообщений. При этом управляющие сообщения и данные, пересылаемые между узлами сети, передаются в виде пакетов обмена. Компьютерные сети характерны тем, что против них предпринимают так называемые удаленные атаки . Нарушитель может находиться за тысячи километров от атакуемого объекта, при этом нападению может подвергаться не только конкретный компьютер, но и информация, передающаяся по сетевым каналам связи.

Обеспечение информационной безопасности

Формирование режима информационной безопасности - проблема комплексная. Меры по ее решению можно подразделить на пять уровней:

  1. законодательный (законы, нормативные акты, стандарты и т.п.);
  2. морально-этический (всевозможные нормы поведения, несоблюдение которых ведет к падению престижа конкретного человека или целой организации);
  3. административный (действия общего характера, предпринимаемые руководством организации);
  4. физический (механические, электро- и электронно-механические препятствия на возможных путях проникновения потенциальных нарушителей);
  5. аппаратно-программный (электронные устройства и специальные программы защиты информации).

Единая совокупность всех этих мер, направленных на противодействие угрозам безопасности с целью сведения к минимуму возможности ущерба, образуют систему защиты .

Надежная система защиты должна соответствовать следующим принципам:

  • Стоимость средств защиты должна быть меньше, чем размеры возможного ущерба.
  • Каждый пользователь должен иметь минимальный набор привилегий, необходимый для работы.
  • Защита тем более эффективна, чем проще пользователю с ней работать.
  • Возможность отключения в экстренных случаях.
  • Специалисты, имеющие отношение к системе защиты должны полностью представлять себе принципы ее функционирования и в случае возникновения затруднительных ситуаций адекватно на них реагировать.
  • Под защитой должна находиться вся система обработки информации.
  • Разработчики системы защиты, не должны быть в числе тех, кого эта система будет контролировать.
  • Система защиты должна предоставлять доказательства корректности своей работы.
  • Лица, занимающиеся обеспечением информационной безопасности, должны нести личную ответственность.
  • Объекты защиты целесообразно разделять на группы так, чтобы нарушение защиты в одной из групп не влияло на безопасность других.
  • Надежная система защиты должна быть полностью протестирована и согласована.
  • Защита становится более эффективной и гибкой, если она допускает изменение своих параметров со стороны администратора.
  • Система защиты должна разрабатываться, исходя из предположения, что пользователи будут совершать серьезные ошибки и, вообще, имеют наихудшие намерения.
  • Наиболее важные и критические решения должны приниматься человеком.
  • Существование механизмов защиты должно быть по возможности скрыто от пользователей, работа которых находится под контролем.

Аппаратно-программные средства защиты информации

Несмотря на то, что современные ОС для персональных компьютеров, такие, как Windows 2000, Windows XP и Windows NT, имеют собственные подсистемы защиты, актуальность создания дополнительных средств защиты сохраняется. Дело в том, что большинство систем не способны защитить данные, находящиеся за их пределами, например при сетевом информационном обмене.

Аппаратно-программные средства защиты информации можно разбить на пять групп:

  1. Системы идентификации (распознавания) и аутентификации (проверки подлинности) пользователей.
  2. Системы шифрования дисковых данных.
  3. Системы шифрования данных, передаваемых по сетям.
  4. Системы аутентификации электронных данных.
  5. Средства управления криптографическими ключами.

1. Системы идентификации и аутентификации пользователей

Применяются для ограничения доступа случайных и незаконных пользователей к ресурсам компьютерной системы. Общий алгоритм работы таких систем заключается в том, чтобы получить от пользователя информацию, удостоверяющую его личность, проверить ее подлинность и затем предоставить (или не предоставить) этому пользователю возможность работы с системой.

При построении этих систем возникает проблема выбора информации, на основе которой осуществляются процедуры идентификации и аутентификации пользователя. Можно выделить следующие типы:

  • секретная информация, которой обладает пользователь (пароль, секретный ключ, персональный идентификатор и т.п.); пользователь должен запомнить эту информацию или же для нее могут быть применены специальные средства хранения;
  • физиологические параметры человека (отпечатки пальцев, рисунок радужной оболочки глаза и т.п.) или особенности поведения (особенности работы на клавиатуре и т.п.).

Системы, основанные на первом типе информации, считаются традиционными . Системы, использующие второй тип информации, называют биометрическими . Следует отметить наметившуюся тенденцию опережающего развития биометрических систем идентификации.

2. Системы шифрования дисковых данных

Чтобы сделать информацию бесполезной для противника, используется совокупность методов преобразования данных, называемая криптографией [от греч. kryptos - скрытый и grapho - пишу].

Системы шифрования могут осуществлять криптографические преобразования данных на уровне файлов или на уровне дисков. К программам первого типа можно отнести архиваторы типа ARJ и RAR, которые позволяют использовать криптографические методы для защиты архивных файлов. Примером систем второго типа может служить программа шифрования Diskreet, входящая в состав популярного программного пакета Norton Utilities, Best Crypt.

Другим классификационным признаком систем шифрования дисковых данных является способ их функционирования. По способу функционирования системы шифрования дисковых данных делят на два класса:

  • системы "прозрачного" шифрования;
  • системы, специально вызываемые для осуществления шифрования.

В системах прозрачного шифрования (шифрования "на лету") криптографические преобразования осуществляются в режиме реального времени, незаметно для пользователя. Например, пользователь записывает подготовленный в текстовом редакторе документ на защищаемый диск, а система защиты в процессе записи выполняет его шифрование.

Системы второго класса обычно представляют собой утилиты, которые необходимо специально вызывать для выполнения шифрования. К ним относятся, например, архиваторы со встроенными средствами парольной защиты.

Большинство систем, предлагающих установить пароль на документ, не шифрует информацию, а только обеспечивает запрос пароля при доступе к документу. К таким системам относится MS Office, 1C и многие другие.

3. Системы шифрования данных, передаваемых по сетям

Различают два основных способа шифрования: канальное шифрование и оконечное (абонентское) шифрование.

В случае канального шифрования защищается вся информация, передаваемая по каналу связи, включая служебную. Этот способ шифрования обладает следующим достоинством - встраивание процедур шифрования на канальный уровень позволяет использовать аппаратные средства, что способствует повышению производительности системы. Однако у данного подхода имеются и существенные недостатки:

  • шифрование служебных данных осложняет механизм маршрутизации сетевых пакетов и требует расшифрования данных в устройствах промежуточной коммуникации (шлюзах, ретрансляторах и т.п.);
  • шифрование служебной информации может привести к появлению статистических закономерностей в шифрованных данных, что влияет на надежность защиты и накладывает ограничения на использование криптографических алгоритмов.

Оконечное (абонентское) шифрование позволяет обеспечить конфиденциальность данных, передаваемых между двумя абонентами. В этом случае защищается только содержание сообщений, вся служебная информация остается открытой. Недостатком является возможность анализировать информацию о структуре обмена сообщениями, например об отправителе и получателе, о времени и условиях передачи данных, а также об объеме передаваемых данных.

4. Системы аутентификации электронных данных

При обмене данными по сетям возникает проблема аутентификации автора документа и самого документа, т.е. установление подлинности автора и проверка отсутствия изменений в полученном документе. Для аутентификации данных применяют код аутентификации сообщения (имитовставку) или электронную подпись.

Имитовставка вырабатывается из открытых данных посредством специального преобразования шифрования с использованием секретного ключа и передается по каналу связи в конце зашифрованных данных. Имитовставка проверяется получателем, владеющим секретным ключом, путем повторения процедуры, выполненной ранее отправителем, над полученными открытыми данными.

Электронная цифровая подпись представляет собой относительно небольшое количество дополнительной аутентифицирующей информации, передаваемой вместе с подписываемым текстом. Отправитель формирует цифровую подпись, используя секретный ключ отправителя. Получатель проверяет подпись, используя открытый ключ отправителя.

Таким образом, для реализации имитовставки используются принципы симметричного шифрования, а для реализации электронной подписи - асимметричного. Подробнее эти две системы шифрования будем изучать позже.

5. Средства управления криптографическими ключами

Безопасность любой криптосистемы определяется используемыми криптографическими ключами. В случае ненадежного управления ключами злоумышленник может завладеть ключевой информацией и получить полный доступ ко всей информации в системе или сети.

Различают следующие виды функций управления ключами: генерация, хранение, и распределение ключей.

Способы генерации ключей для симметричных и асимметричных криптосистем различны. Для генерации ключей симметричных криптосистем используются аппаратные и программные средства генерации случайных чисел. Генерация ключей для асимметричных криптосистем более сложна, так как ключи должны обладать определенными математическими свойствами. Подробнее на этом вопросе остановимся при изучении симметричных и асимметричных криптосистем.

Функция хранения предполагает организацию безопасного хранения, учета и удаления ключевой информации. Для обеспечения безопасного хранения ключей применяют их шифрование с помощью других ключей. Такой подход приводит к концепции иерархии ключей. В иерархию ключей обычно входит главный ключ (т.е. мастер-ключ), ключ шифрования ключей и ключ шифрования данных. Следует отметить, что генерация и хранение мастер-ключа является критическим вопросом криптозащиты.

Распределение - самый ответственный процесс в управлении ключами. Этот процесс должен гарантировать скрытность распределяемых ключей, а также быть оперативным и точным. Между пользователями сети ключи распределяют двумя способами:

  • с помощью прямого обмена сеансовыми ключами;
  • используя один или несколько центров распределения ключей.

Перечень документов

  1. О ГОСУДАРСТВЕННОЙ ТАЙНЕ. Закон Российской Федерации от 21 июля 1993 года № 5485-1 (в ред. Федерального закона от 6 октября 1997 года № 131-ФЗ).
  2. ОБ ИНФОРМАЦИИ, ИНФОРМАТИЗАЦИИ И ЗАЩИТЕ ИНФОРМАЦИИ. Федеральный закон Российской Федерации от 20 февраля 1995 года № 24-ФЗ. Принят Государственной Думой 25 января 1995 года.
  3. О ПРАВОВОЙ ОХРАНЕ ПРОГРАММ ДЛЯ ЭЛЕКТРОННЫХ ВЫЧИСЛИТЕЛЬНЫХ МАШИН И БАЗ ДАННЫХ. Закон Российской Федерации от 23 фентября 1992 года № 3524-1.
  4. ОБ ЭЛЕКТРОННОЙ ЦИФРОВОЙ ПОДПИСИ. Федеральный закон Российской Федерации от 10 января 2002 года № 1-ФЗ.
  5. ОБ АВТОРСКОМ ПРАВЕ И СМЕЖНЫХ ПРАВАХ. Закон Российской Федерации от 9 июля 1993 года № 5351-1.
  6. О ФЕДЕРАЛЬНЫХ ОРГАНАХ ПРАВИТЕЛЬСТВЕННОЙ СВЯЗИ И ИНФОРМАЦИИ. Закон Российской Федерации (в ред. Указа Президента РФ от 24.12.1993 № 2288; Федерального закона от 07.11.2000 № 135-ФЗ.
  7. Положение об аккредитации испытательных лабораторий и органов по сертификации средств защиты информации по требованиям безопасности информации / Государственная техническая комиссия при Президенте Российской Федерации.
  8. Инструкция о порядке маркирования сертификатов соответствия, их копий и сертификационных средств защиты информации / Государственная техническая комиссия при Президенте Российской Федерации.
  9. Положение по аттестации объектов информатизации по требованиям безопасности информации / Государственная техническая комиссия при Президенте Российской Федерации.
  10. Положение о сертификации средств защиты информации по требованиям безопасности информации: с дополнениями в соответствии с Постановлением Правительства Российской Федерации от 26 июня 1995 года № 608 "О сертификации средств защиты информации" / Государственная техническая комиссия при Президенте Российской Федерации.
  11. Положение о государственном лицензировании деятельности в области защиты информации / Государственная техническая комиссия при Президенте Российской Федерации.
  12. Автоматизированные системы. Защита от несанкционированного доступа к информации. Классификация автоматизированных систем и требования по защите информации: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.
  13. Концепция защиты средств вычислительной техники и автоматизированных систем от несанкционированного доступа к информации: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.
  14. Средства вычислительной техники. Межсетевые экраны. Защита от несанкционированного доступа к информации. Показатели защищенности от несанкционированного доступа к информации: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.
  15. Средства вычислительной техники. Защита от несанкционированного доступа к информации. Показатели защищенности от несанкционированного доступа к информации: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.
  16. Защита информации. Специальные защитные знаки. Классификация и общие требования: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.
  17. Защита от несанкционированного доступа к информации. Термины и определения: Руководящий документ / Государственная техническая комиссия при Президенте Российской Федерации.

Нарушения ИБ. Интернет и безопасность корпоративного информационного пространства

Результаты опроса

М.С.Савельев
Заместитель директора по маркетингу
Компании "Информзащита"

Эффективная стратегия защиты корпоративной информационной среды (ИС) требует не только стремления к обеспечению всесторонней безопасности сети компании, но и анализа настоящего положения дел в этой области и оценки предпринимаемых действий для анализа существующих рисков и предупреждения нарушений. Результаты исследования, проведенного журналом "Information Security/Информационная безопасность", могут оказаться полезными для изучения проблем информационной безопасности (ИБ) компании.

Результаты данного опроса красноречиво свидетельствуют о том, что основная угроза безопасности корпоративного информационного пространства исходит именно изнутри компании.

"Гигиена" информационной системы компании

Практически никто из опрошенных не сталкивался со значительными нарушениями ИБ компании со стороны внешних злоумышленников (рис. 1). Половина респондентов утверждает, что на их памяти не случалось попыток проникновения в корпоративную ИС извне. Правда, для абсолютно точного заключения было бы интересно учитывать и еще один факт: имеют ли компании, участвующие в опросе, средства для обнаружения и предотвращения внешних атак, но такой вопрос не был задан.

В повседневной практике довольно часто приходится сталкиваться с тем, что, невзирая на наличие в своем арсенале средств защиты, отделы ИБ компаний и организаций не в состоянии успешно их эксплуатировать. Косвенным подтверждением тому служит картина ответов на вопрос "Насколько развито управление системой обеспечения ИБ?" (рис. 2): неэффективно используется даже такое "гигиеническое" средство защиты, как антивирус. В компаниях почти пятой части респондентов не осуществляется настройка опций автоматического обновления антивирусных баз – этот вопрос отдается на откуп пользователям. Отсюда совершенно очевидно следующее: руководство и IT-специалисты компаний-респондентов могут просто не подозревать о том, какие события происходят в их системах. К слову, современные угрозы, такие, как, например, бот-вирусы, можно обнаружить лишь по едва уловимым признакам, а точнее – только путем анализа тщательно настроенных средств защиты.

Самый опасный нарушитель – пользователь

Вопреки весьма расхожим в 2006 г. утверждениям об огромной опасности, исходящей от инсайдерских угроз, опрос журнала показал, что большая часть инцидентов в реальном опыте специалистов по ИБ – это неумышленные, непреднамеренные действия пользователей (рис. 3). Фактически пользователи нарушают установленные в организации правила использования корпоративной ИС, незлонамеренно совершив то или иное действие (рис. 4). Причем характерно, что правила поведения в области ИБ для сотрудников компаний предусмотрительно описаны (рис. 2) и в политике по информационной безопасности, и в обязанностях сотрудников, и в прочих документах. Несмотря на засвидетельствованное участниками анкетирования наличие в их компаниях специальных инструкций и документов по ИБ, имеет место множество нарушений безопасности из-за неосведомленности пользователей.

Не происходит ли это потому, что требования документов по ИБ до сотрудников не доводятся? Вответе на вопрос " Как сотрудники Вашей компаний узнают о своих обязанностях в области соблюдения ИБ?" (рис. 5), 15% респондентов заявили, что подобные требования существуют лишь на бумаге, и сотрудников организаций о них никак не информируют. Регулярные тренинги в области защиты информации проводятся лишь в пятой части опрошенных компаний. В подавляющем же большинстве случаев специалисты по ИБ несколько самонадеянно полагают, что сотрудники каким-то образом самостоятельно должны овладеть содержимым нормативных документов по безопасности. Смею утверждать, что даже ознакомление "под роспись" не дает никакого эффекта: мы все привыкли формально подписываться под инструкциями по технике безопасности, не вникая в их суть. Нередко и вовсе обходится без такового.

В погоне за тремя зайцами

Чем же для нас чреваты 10% выявленных нарушений? Судя по равномерному распределению ответов на вопрос "Охарактеризуйте важность корпоративной информации" (рис. 6), немногие из специалистов по ИБ действительно разбираются в сущности защищаемого бизнеса. Конечно, и сам вопрос задан несколько прямолинейно, но в практике довольно часто приходится сталкиваться с тем, что в погоне за тремя зайцами (целостностью, конфиденциальностью и доступностью) многие готовы ловить не то, что критично, а то, "кого легче поймать". Порой такие попытки начинают терять связь со здравым смыслом: в какой-то момент все силы службы безопасности затрачиваются на ограничение возможности использовать USB-носители, и при этом никак не контролируются электронная почта, факсы, принтеры и другие средства, позволяющие отправить информацию за пределы организации. Проблемы восстановления информации и работоспособности системы в случае сбоя вообще остаются без внимания. А между прочим это одна из главных угроз, если доверять результатам ответов на вопрос: "Укажите типы пользования информационными ресурсами компании сотрудниками с нарушением установленных режимов в прошлом году?" (рис. 4).

Не таким ли непониманием объясняется выявленное опросом противоречие: несмотря на огромное значение, которое руководство компаний придает вопросам безопасности (рис. 7), увеличить финансирование на обеспечение ИБ и совершенствовать системы защиты TOP-менеджеры не спешат (рис. 8).

Специалисты по безопасности "в собственном соку"

Из исследования совершенно очевидно, что многие специалисты по безопасности "варятся в собственном соку": отвечая на вопрос "К каким мерам по управлению и экспертизе ИБ обращалась Ваша компания за прошедший год?" (рис. 9), только 12,5% опрошенных заявили о том, что пользуются услугами и консультациями профессиональных консультантов по безопасности. Еще чуть более 6% обращаются к мировым стандартам и практикам. Остальные предпочитают сверять действительность лишь с собственным опытом и опытом своих коллег. Следует особо отметить тот факт, что значительная часть опрошенных уверена: количество инцидентов, связанных с ИБ, в будущем будет только расти, и выявлять их станет сложнее (рис. 10). Однако большинство респондентов надеются на некоторую панацею, на палочку-выручалочку в виде какого-то высокотехнологичного решения, которое спасет их от надвигающейся опасности. Отрадно констатировать, что основные надежды связываются именно с правильным выстраиванием и управлением процессами защиты. И это подтверждает наблюдаемый сегодня рост интереса к принимаемым международным стандартам по безопасности. Современные специалисты осознанно стремятся использовать рекомендации стандартов в повседневной деятельности.

© 2024 nimfettamine.ru - Windows. Железо. Программы. Безопасность. Операционные системы